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Abstract
Speech Activity and Speaker Change Point Detection for On-
line Streams

The main focus of the thesis lies on two closely interrelated tasks,
speech activity detection and speaker change point detection, and
their applications in online processing. These tasks commonly play
a crucial role of speech preprocessors utilized in speech-processing
applications, such as automatic speech recognition or speaker di-
arization. While their use in offline systems is extensively covered
in literature, the number of published works focusing on online use
is limited. This is unfortunate, as many speech-processing applica-
tions (e.g., monitoring systems) are required to be run in real time.

The thesis begins with a three-chapter opening part, where the
first introductory chapter explains the basic concepts and outlines
the practical use of both tasks. It is followed by a chapter, which
reviews the current state of the art and lists the existing toolk-
its. That part is concluded by a chapter explaining the motivation
behind the thesis and the practical use in monitoring systems; ul-
timately, this chapter sets the main goals of the thesis.

In the thesis, the next two chapters cover the theoretical back-
ground of both tasks. They present selected approaches relevant to
the work (used for result comparisons) or focused on online use.

The following chapter proposes the final speech activity detection
approach for online use. Within this chapter, a detailed description
of the development of this approach is available as well as its thor-
ough experimental evaluation. This approach yields state-of-the-art
results under low- and medium-noise conditions on the standardized
QUT-NOISE-TIMIT corpus. It is also integrated into a monitoring
system, where it supplements a speech recognition system.

The final speaker change point detection approach is proposed in
the following chapter. It was designed in a series of consecutive
experiments, which are extensively detailed in this chapter. An ex-
perimental evaluation of this approach on the COST278 database
shows the performance of approaching the offline reference system
while operating in online mode with low latency.

Finally, the last chapter summarizes all the results of the thesis.

Keywords: Deep Neural Networks, Online Streams, Speech Activ-
ity Detection, Speaker Change Point Detection, Weighted Finite-
State Transducers.
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Introduction

Nowadays, an increasingly overwhelming amount of audio data is produced every day
by various media streams (television, radio, etc.) as well as many other sources (e.g.,
the Internet). Unfortunately, most of this data lacks labels (annotations, tags) of
any kind that would be useful for a wide range of applications; in this case, for speech
processing. The aforementioned labels vary greatly; they can, e.g., include speech
transcription, subtitles, change of speaker, or name of the played song, to name a few.
They can even carry time stamps, which can be further utilized for audio searching,
indexing, or data retrieval. Speech Activity Detection (SAD) and Speaker Change
Point (SCP) detection (often called speaker segmentation) are among the tasks that
can create such labels. The former is a task of identifying and labeling speech and
non-speech segments in an utterance while the latter, for a given utterance, finds
and labels changes between different speakers (i.e., it is a task of detecting exact
moments when a change of speaker occurs). As their output, both of these tasks
split the recording into segments (speech/non-speech or speaker-homogeneous) and
provide start- and end- time stamps of these newly defined blocks.

In general, SAD and SCP detection are closely interrelated tasks. As such, they
form an integral preprocessing component of many speech processing applications
including, e.g., speaker verification and identification, language, gender or emotion
detection, audio indexing and retrieval, or automatic speech transcription. Specifi-
cally, in speech transcription, implementation of SAD can significantly speed up the
processing as well as increase the overall performance as the non-speech segments are
omitted from transcription. Finally, SAD usually plays the role of the preprocessor
even for SCP detection, which is only run on obtained speech segments.

SCP detection, in conjunction with speaker clustering, results in a speaker di-
arization system. Speaker diarization focuses on answering the question “who spoke
when?” (it breaks down the recording into speaker-homogeneous segments and
clusters the segments according to the speaker’s identity), and it can be further
extended into speaker verification and identification systems. The research is driven
by challenges held by the National Institute of Standards and Technology (NIST).
Additionally, SCP detection can be employed for tasks such as rich transcription, di-
alog detection, speaker tracking, multi-speaker detection, and more. Lastly, the ex-
tracted speaker-homogeneous segments can also be used as training data for speaker-
adaptive approaches to Automatic Speech Recognition (ASR).

The diverse applications of SAD and SCP detection make both of these tasks
popular research topics. Numerous research groups and research centers compete
worldwide and propose novel approaches in pursuit of improving the state-of-the-
art results. Challenges are also being held quite regularly. The popularity of these
research topics can also be documented by large amounts of papers accepted at
international conferences, such as Interspeech or ICASSP. With the recent boom in
deep learning in mind, SAD and SCP detection attract more and more researchers
every day, and much exciting work is being published every year.
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1 State of the Art

At present, SAD and SCP detection are generally treated as machine learning tasks.
Recently, deep learning has extensively been applied to both of these tasks to im-
prove their performance, and subsequently the results achieved. Both of these tasks
are usually performed in two consecutive phases: feature extraction and classifica-
tion. Moreover, both can be run in an offline or online mode. In the former mode,
no additional restrictions are applied, and low latency and real-time processing are
not vital. However, they become crucial in the latter mode. Furthermore, an on-
line decoder may only perform one left-to-right pass through the input data. These
additional restrictions result in a limited amount of published work for online use.

1.1 Speech Activity Detection
As already stated above, the majority of the existing SAD approaches operate in
two subsequent phases: feature extraction and speech/non-speech classification. In
the former phase, the classic approaches for feature extraction utilize energy [1],
zero-crossing rate [2] or auto-correlation function [3]. The family of more complex
features, which have also been successfully applied, includes Mel-Frequency Cepstral
Coefficients (MFCCs) [4, 5], pitch related features [6], multi-band long-term signal
variability features [7] or i-vectors [8]. Bottleneck (BTN) features extracted from
Deep Neural Networks (DNNs) have also been proposed [9, 10].

In the latter phase, various classification algorithms can be used, such as support
vector machines [11] or Gaussian Mixture Models (GMMs) [12–14]. In recent years,
various DNN architectures have been frequently employed, including fully connected
feed-forward DNNs [4, 15, 16], Convolutional Neural Networks (CNNs) [17, 18],
dilated CNNs [19] or Recurrent Neural Networks (RNNs) [20–22]. More complex
approaches, such as jointly trained DNNs [23], boosted DNNs [24] or a combination
of DNNs and CNNs [25], have also been proposed. Furthermore, an adaptive context
attention model was suggested in [26]. The output from a given classifier can also be
smoothed to further improve the accuracy of the detection. Over the years, various
techniques, such as the Viterbi decoder [4] or Weighted Finite-State Transducers
(WFSTs) [27], have been applied for this purpose.

Most of the previously mentioned works primarily aim at offline application,
or the focus is not specified in the given publications. The limited amount of ap-
proaches developed namely for the online task include, for example, conditional
random fields [28] or accurate endpointing with expected pause duration [29]. An
unsupervised approach to real-time Voice Activity Detection (VAD) was introduced
in [30, 31]. Another approach in [32] utilizes short-term features. Recently, a causal
voice activity detector based on DNNs has been suggested in [33]. In [34], an online
speech activity detector using simultaneously trained neural networks is shown. Fi-
nally, the authors of [35] studied the impact of lowering the representation precision
of DNN weights and neurons on the accuracy and delay of VAD.
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1.2 Speaker Change Point Detection
In the literature, SCP detection commonly utilizes SAD as a preprocessor, and
it is thus carried out only on speech segments. Furthermore, it is usually done
without any prior knowledge about the identity or even the number of speakers in
the recording (i.e., it is treated as a speaker-independent task). Similar to SAD, most
of the existing SCP detection approaches are designed in two consecutive phases:
feature extraction and change point detection itself.

In the first phase, various types of input features have been applied over the
years. In the early years, more straightforward ones were successfully employed,
such as zero-crossing rate or pitch [36]. MFCCs [37, 38] were probably the most
commonly used features, followed by line spectrum pairs [39]. Recently, the main
focus has shifted to crafting more complex features capturing more speaker-specific
information. Nowadays, i-vectors [40, 41] are the go-to features for most state-of-
the-art systems. Alternatively, DNNs have also been successfully utilized to extract
complex features [42, 43]. Furthermore, d-vectors were presented in [44], yielding
excellent results. The latest trend goes in the direction of deep speaker embed-
dings [45–48] designed for end-to-end systems.

In the second phase, the SCP detection approaches can be divided into three
main categories: metric-, model- and hybrid-based. The first type requires a dis-
tance metric to be defined first. After that, usually, two adjacent windows are
shifted alongside the recording, and the distance between them is computed. If
the distance is larger than a predefined threshold, a change point is detected. The
most commonly used distance metrics include the Bayesian Information Criterion
(BIC) [49–51], the generalized likelihood ratio [52], the Gaussian divergence [53],
the Kullback-Leibler divergence [54], or one-class support vector machines [55]. A
model-based approach utilizes trained models from labeled audio data to detect
speaker change points. Among the most common approaches, there are the Hidden
Markov Models (HMMs) [56], the GMMs [57], and the eigenvoice-based models [58].
Deep learning approaches based on DNNs [43, 59], CNNs [60, 61], unidirectional [62],
or bidirectional [63, 64] long short-term memory RNNs all yield excellent results.

Most of the approaches cited so far were designed with regard to the best possible
quality of detection, and all of them are, of course, applicable to offline processing.
However, the earlier discussed restrictions of online application are usually not taken
into account during design, and the usability of these methods for online mode is
therefore limited (or not discussed in the respective papers). That means that the
number of approaches explicitly designed for real-time processing is much smaller.
In the early years, an online SCP detector utilizing the Bayesian fusion method was
proposed [65, 66]. Other works focused on BIC [67, 68], XBIC [69], log-likelihood
ratio [70], or GMMs [57, 71–73]. In [74], the authors explored BIC, i-vectors, and
within-class covariance normalization for speaker diarization. The use of i-vectors
for diarization was also investigated in [75]. Features extracted from neural network
were explored in [76]. Finally, the authors in [77] studied in detail the influence of
the online environment of several SCP detection approaches on a diarization system.
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2 Motivation and Goals

A detailed examination of the current state of the art in speech activity detection,
as well as speaker change point detection, reveals two prominent features: a) deep
learning is pushing the field further; and b) there is a significant lack of online SAD
and SCP detectors. With this information, it is feasible to set up the motivation
and consequently, the main goals of the thesis.

2.1 Motivation
Over the past few years, significant breakthroughs [78] have been achieved in deep
learning. These breakthroughs have resulted in many novel approaches in various
research fields, such as speech recognition [79–81], visual object recognition [82,
83], natural language processing [84, 85], and more, all yielding excellent results as
compared with the previously used conventional techniques. These successes have
understandably led to further application of deep neural networks to a much more
varied range of research tasks. In this case, deep learning is applied to speech activity
detection and speaker change point detection. Lately, several papers dealing with
this topic have been published for both tasks, yet there is a lot of room for further
experimentation, tuning up, and improvements. Performance in the online mode,
especially, can be further enhanced.

Speech activity detection and speaker change point detection represent a very
active research topic due to their varied use in a wide range of speech processing
applications. Over the years, most of the published works have strictly focused on
the offline use as it allows more freedom during the design of the detector. It is also
easier to tune the performance of an offline system to achieve excellent results (i.e.,
multiple passes through data, processing of whole recording, a fusion of methods,
etc.) than its online counterpart. Moreover, for many applications, it is a perfectly
viable and even preferred solution. However, some applications (e.g., Television
and Radio [TVR] monitoring systems) need to operate in real time and with low la-
tency. These additional restrictions usually result in somewhat limited performance.
Extension of the existing offline methods to their online use is a commonly cumber-
some and complicated process, which is even quite often impossible. Moreover, the
performance is usually affected as well. When designing an approach that may be
used in a real-time application, it is generally more convenient to circumvent these
restrictions from the initial stages of development. Online speech activity detec-
tion and speaker change point detection approaches (based on deep learning) that
would reach results at least comparable with their offline counterparts would be very
beneficial for many real-time speech processing applications (e.g., TVR monitoring
system) in both commercial and research spheres (i.e., they could push the field
further).
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2.2 Practical Use in TVR Monitoring System
The author’s lab has been focusing on speech processing and ASR for a long time.
The TVR monitoring system developed at SpeechLab@TUL in cooperation with the
NanoTrix company carries out 24/7 online transcription of radio and TV broadcasts
in various languages. In the peak hours (during the day), it transcribes up to 120
streams in parallel in real time. During the non-prime hours (mostly at night),
it still processes at least 20 online streams every second. The daily average ranges
from 60 to 80 simultaneously transcribed online streams. Approximately “133” days
(3,196 hours or 750 GB) of recordings are being processed every day.

Integration of SAD and SCP detection approaches into this existing system would
be beneficial for many reasons. First, SAD would be used as a preprocessor for online
streams to filter out non-speech events and run the transcriber only on speech ones.
This should result in a significant reduction of processing time, and it should ease
the CPU load as well (if the stream contains a lot of non-speech segments, e.g., music
stream radios). It should also yield a better accuracy of transcriptions as the non-
speech parts are omitted from being transcribed (i.e., less gibberish). Furthermore,
the obtained speech segments would be used as inputs into the SCP detection and
potentially other speech processing applications.

Second, the SCP detector would find and label transitions from one speaker
to another. These newly defined labels would ease the handling of online streams
as they would provide additional information about the content. They would also
segment the streams into smaller speaker-homogeneous chunks, which could eas-
ily be further utilized. These chunks form a starting point for a full diarization
system, which could be extended to speaker verification and identification systems
to provide the transcribed streams with even more valuable information. The fi-
nal detected segments could also be extracted and used as training data for future
speaker-adaptive approaches to speech recognition.

2.3 Goals
The main goals of the thesis are thus to:

I. develop speech activity detection approach and speaker change point detection
approach that:

1. utilize state-of-the-art techniques, specifically including DNNs;
2. allow for robust speech/non-speech and speaker change point detection;
3. operate in an online mode with low latency in order to process real-time

streams;
4. can be integrated into the existing TVR monitoring system developed at

the author’s lab in cooperation with the NanoTrix company;

II. verify the proposed approaches and compare their results on publicly available
datasets with selected existing approaches/toolkits.
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3 Proposed Speech Activity Detection Ap-
proach

The final approach to speech activity detection was proposed in a series of con-
secutive experiments, all described and heavily discussed within this chapter. The
majority of this designing process was covered in [86–88], and portions of the re-
spective papers were directly utilized in the thesis. This chapter thus describes
evaluation metrics, training and development data, experimental evaluation of all
steps taken, evaluation on standardized QUT-NOISE-TIMIT [89] corpus, evaluation
in real speech transcription system, and at last, it sets the final SAD approach.

3.1 Evaluation Metrics
In total, seven different commonly utilized metrics were employed for the evaluation
of SAD. These metrics can be grouped into three main subsets: overall accuracy
metrics, change point quality metrics, and performance metrics.

Overall Accuracy Metrics

The main focus of this group of metrics is the accuracy of speech and non-speech
segments on a frame-level (i.e., the recording is treated as a sequence of speech and
non-speech frames). In this case, each frame is considered independent, and only
a direct comparison between the reference frame and the corresponding decoded
frame (frame pair) is evaluated. If the frame pair is matched, it is considered as a
hit; otherwise, it is a miss. For this task, four closely related metrics were applied.

The first metric, Frame Error Rate (FER), is defined as a ratio of non-matching
frame pairs to all frames in reference. Miss Rate (MR), the second metric, explores
only the speech segments. It can be expressed as a ratio of speech frames misclassi-
fied as non-speech ones to all speech frames in reference. False Alarm Rate (FAR) is
defined analogously to MR but for non-speech frames [4]. Finally, Half-Total Error
Rate (HTER) can be defined as an equal-weighted average of MR and FAR.

The optimal SAD approach should minimize the miss rate while keeping the false
alarm rate relatively low. The reason is that the following speech processing system
(e.g., SCP detector or speech transcriber) should get all speech frames possible with
only a limited amount of non-speech events added.

Change Point Quality Metrics

Change point quality metrics offer an alternative view on the performance of SAD.
Instead of a frame-based evaluation, they explore the recording as a sequence of con-
secutive speech and non-speech events, and more specifically, as the name suggests,
they focus on the accuracy of detected (computed) change points between these
events. For this task, two distinct metrics, F-measure and δ2/3, were employed.

9



To define these two metrics, the detected and the reference change points have
to be aligned at first, e.g., by the bidirectional search for the nearest neighbor [90].
After the alignment, the matched detected and reference change points are labeled
as hits, while the errors are marked as insertions (when detected change point does
not match any of the reference change points) and deletions (when reference change
point is not matched by any of the detected change points).

Given the values of hits, insertions and deletions, Precision (P) and Recall (R)
can be expressed. Precision is defined as a ratio between the number of correctly
detected change points and the number of detected change points, while recall is
expressed as a ratio between the number of correctly detected change points and
the number of change points in reference. Precision and recall are in a contradictory
relationship with each other (i.e., when one improves the other one worsens). For
this reason and to express the performance with only one value, F-measure is defined:

F −measure[%] =
2 ∗R ∗ P
R + P

. (3.1)

Given the correctly detected change points (hits), it is also possible to calculate
an error value for each hit (in seconds) and sort all the hits according to these
values in ascending order. In this work, δ2/3 was utilized. It expresses (in seconds)
the maximal error of the alignment for the first two-thirds of the sorted (best) hits.

Performance Metrics

The last set of metrics monitor the performance of SAD in an online environment.
Two different metrics, Latency (L) and Real-Time Factor (RTF), were utilized. The
former one is defined as an average time between the detected change point, and the
moment the decoder outputs the change point label. The latter metric expresses
the speed of decoding as a ratio of processing time to the duration of the recording.

3.2 Data Used
For training, in total, 67 hours of recordings have been gathered and utilized. The
speech is represented by 30 hours of clean speech recordings of English and several
Slavic languages (Czech, Slovak, Polish, Russian, and Croatian). These recordings
originally served as training data for speech transcription systems. The non-speech
is modeled by 30 hours of music of different genres with the addition of 7 hours of
non-speech events/noises. Lastly, the annotations were done automatically, speech
label for clean speech utterances and non-speech one for everything else.

The data used for development consists of 6 hours of TV and radio recordings in
several Slavic languages (Czech, Slovak, Polish, and Russian). It contains not only
clean speech segments but also segments with music, background noises, jingles, and
advertisements. Annotations of this data were obtained in a two-step process. At
first, speech/non-speech labels were produced automatically by the baseline DNN-
based approach introduced in Sect. 3.3. These obtained labels were then corrected
and fine-tuned by hand. In total, 70% of all frames are marked as speech ones.
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3.3 Baseline DNN-Based Approach
The baseline speech activity detection approach employed a feed-forward deep neural
network with a binary output (speech or non-speech) as a classifier (i.e., without
any smoothing). The DNN had 5 hidden layers, each consisting of 128 neurons.
The ReLU activation function and mini-batches of size 1024 were used within 10
epochs of training. The learning rate was set to 0.08. 39-dimensional log Filter Bank
Coefficients (FBCs) were used as features. The input vector for DNN had a length of
51 and was formed by concatenating 25 previous frames, the current frame, and 25
following frames. Local normalization was performed within one-second windows.

The performance of the baseline approach is summarized in Table 3.1 (see its
first row). It is evident that it missed approximately 4% of speech segments. This
fact affects the accuracy of the possible speech transcription system negatively, as
the segments incorrectly marked as non-speech would not be transcribed. Another
problem of the baseline detector was the time precision of the change-point detection:
the achieved value of δ2/3 was 0.42 seconds. This is also due to the fact that it is
sometimes hard even for human annotators to determine the exact frame where a
state change occurs. The baseline detector also produced a high number of false
non-speech segments with a very short duration of one or two frames.

Table 3.1: Summarized results of the proposed SAD approach.

approach FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
baseline DNN-based 4.7 3.7 7.1 0.3 0.42
+ basic smoothing 2.9 2.2 4.7 28.5 0.27
+ artificial training data 3.1 0.3 10.1 41.3 0.34
modified artificial data 2.4 0.5 7.2 52.7 0.26+ context-based smoothing

Note that the presented DNNs for all SAD experiments were trained on GPU us-
ing the torch framework1. The training scripts are available at the author’s GitHub2.

3.4 Smoothing the Output from DNN
As mentioned in the previous section, the baseline detector classified every input
frame independently. On the other hand, every speech or non-speech segment usu-
ally lasts for at least several frames. Therefore, the following efforts were focused
on smoothing the output from the DNN. For this purpose, weighted finite-state
transducers were utilized using the OpenFst library3.

1http://torch.ch/
2https://github.com/1shark1/nnet/
3http://www.openfst.org/twiki/bin/view/FST/WebHome
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The resulting scheme consists of two transducers. The first models the input
signal (see Figure 3.1). The other one is the transduction model and represents
the smoothing algorithm (see Figure 3.2). It consists of three states. The first
state, denoted by 0, is the initial state. The transitions between states 1 and 2
emit the speech/non-speech labels and are penalized by penalty factors P1 and P2,
respectively. Their values (500 and 500) were tuned on a different dataset.

1 ...frame 1 T+10 frame 0 frame T

Figure 3.1: A transducer modeling the input signal for SAD.

1

S

2

NS/P1

S/P2

NS

0

S

NS

Figure 3.2: A transducer representing the basic smoothing model for SAD.

Given the two described transducers, the decoding process is performed using
the on-the-fly composition of the transduction and the input model of unknown size.
This is possible since the input is considered to be a linear-topology, unweighted,
epsilon-free acceptor. After each composition step, the shortest-path (considering
tropical semi-ring) determined in the resulting model is compared with all other
alternative hypotheses. When a common path is found among these hypotheses
(i.e., with the same output label), the corresponding concatenated output labels are
marked as the final fixed output. Since the rest of the best path is not known with
certainty, it is denoted as a temporary output (i.e., it can be further refined).

The results obtained with the aid of the DNN-based approach with smoothing
are summarized in the second row of Table 3.1. They show an overall significant
boost in performance. For example, F-measure improved from 0.3% to 28.5%, MR
was reduced from 3.7% to 2.2%, and the value of δ2/3 improved noticeably from 0.42
seconds to 0.27 seconds.

3.5 Using Artificial Training Data
The level of MR yielded so far, i.e., around 2%, would still lead to a small increase
in the Word Error Rate (WER) of a transcription system (e.g., from 13% to 14%),
as the speech frames incorrectly classified as non-speech would be omitted from
transcription. Upon closer inspection, the detector specifically misclassified the
speech segments with background noise. The reason for this behavior is that the
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speech data used for DNN training so far were recorded only in clean conditions
(i.e., without any background noise).

Hence in the next step, the goal was to employ training data containing non-
speech events, such as music or jingles in the background. Due to the lack of such
annotated data, an artificial dataset created by mixing 30 hours of clean speech
with non-speech recordings was constructed. For this purpose, a larger set of non-
speech recordings of a total length of 100 hours was prepared first. After that, every
speech recording was mixed with a randomly selected non-speech recording from the
prepared set. Note that every non-speech recording used for mixing had to have the
same or longer duration than the given input speech recording (the selected non-
speech recording was trimmed to match the length of the speech recording) and its
volume was increased or decreased to match the desired level of signal-to-noise ratio
(which was also selected randomly from an interval between −30 dB and 50 dB).

The labeling of this artificial data was carried out automatically: when the SNR
of the recording was higher than a defined threshold of 0 dB, the recording was
marked as speech. In the opposite case, the recording was labeled as non-speech.

The results after using only these 30 hours of mixed training data are shown in
the third row of Table 3.1. It is evident that this approach led to an increase in
F-measure and a significant reduction in MR from 2.2% to 0.3%. Unfortunately,
these improvements are all accompanied by an increase in FAR and, even more
importantly, an increase in δ2/3 from 0.27 seconds to 0.34 seconds. Due to these
issues, a further refinement of the smoothing algorithm was investigated.

3.6 Improved Context-Based Smoothing
The proposed refinement of the smoothing scheme is depicted in Fig. 3.3. In this
case, both the speech and non-speech events are represented as sequences of three
states, where the first and third states (the outer states) model the context. Similarly
to smoothing without any context, the penalties are defined just for transitions
between the speech and non-speech events, i.e., for transition a) from the end state
of speech (stop_S) to the start state of non-speech (start_NS), and b) from the end
state of non-speech (stop_NS) to the start state of speech (start_S). Their values
were fine-tuned on a different dataset.

1

S

3stop_S
2

NS

5stop_NS

stop_S

4
start_NS/P1 NS

start_NS stop_NS
6

start_S/P2

S
start_S

0

S

NS

Figure 3.3: A transducer representing the context-based smoothing model for SAD.

To prepare training data containing transitions between speech and non-speech
events, the dataset from Sect. 3.5 was modified. At first, two recordings were chosen
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randomly from the artificial training set: one speech and one non-speech. After
that, these two recordings were joined in random order. The resulting recording
then contained one of the two possible transitions (i.e., from speech to non-speech
or from non-speech to speech) and was annotated automatically as follows:

1. The number of transition frames was derived from the input feature context
window (25-1-25).

2. Only the 50 frames at the inner boundary of the two joined recordings were
annotated as transitional, i.e., using 25 labels stop_S followed by 25 labels
start_NS or 25 labels stop_NS followed by 25 labels start_S.

3. All other frames were marked as either speech or non-speech.

Finally, the last change associated with the integration of context-based smooth-
ing lies in the DNN model. Instead of the original two output neurons, there are now
6 (speech, non-speech and 4 transitional ones: start_S, stop_S, start_NS, stop_NS)
to match the smoothing scheme and annotation style of data.

The results of the experiment with the context-based smoothing (see the fourth
row of Table 3.1) show that this approach addresses the issue of an increase in δ2/3,
which has emerged due to the use of the artificial training data (see the third row
of Table 3.1). The value of δ2/3 was reduced from 0.34 seconds to 0.27 seconds. At
the same time, a significant decrease in the FAR, an increase in F-measure, and
only a slight decrease in MR by 0.2% were achieved when compared to the previous
experiment. After scoring these results, the proposed approach was considered final.

3.7 Online Performance
An online performance of the proposed SAD approach was closely monitored
throughout the whole design and experimental evaluation. This performance is
crucial for the approach to be integrated into the target TVR monitoring system.
The proposed approach averaged RTF of 0.01 and 2-second latency. Note that Intel
Core i7-3770K @ 3.50GHz was used for the computations. The achieved performance
is well suited for seamless use in real-time processing without any major delay.

3.8 Evaluation on QUT-NOISE-TIMIT Corpus
So far, all of the experiments were conducted only using the development dataset,
which was designed explicitly within the thesis. That is not suitable for comparison
purposes because the dataset has not been used anywhere else or even released to the
general public. To compare the proposed approach with different SAD approaches
presented in the literature, the QUT-NOISE-TIMIT [89] corpus was employed.

The QUT-NOISE-TIMIT corpus was designed for training and testing of various
SAD approaches under different SNR conditions. For this purpose, the authors
gathered background noises across 5 unique scenarios (cafe, car, home, reverb, and
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street) and mixed them with a clean speech from TIMIT corpus [91] creating new
recordings (i.e., the QUT-NOISE-TIMIT corpus) with varying amount of speech,
length (60 or 120 seconds) and SNR level (−10, −5, 0, 5, 10 or 15 dB).

The authors also provided an evaluation protocol. It states that during training,
the only prior knowledge given to the system is the SNR level of the target environ-
ment: low noise (10, 15 dB), medium noise (0, 5 dB), or high noise (−10, −5 dB).
After the decoding is done, the final speech/non-speech segments are aligned with
QUT-NOISE-TIMIT ground truth labels, and MR, FAR, and HTER are evaluated.

The evaluation on the QUT-NOISE-TIMIT corpus shows the performance of the
proposed approach in comparison with five approaches already presented in [89] and
two techniques reaching the state-of-the-art results [14, 92]. The five approaches are:
standardized VAD system ITU-T G.729 Annex B [93], standardized advanced front-
end ETSI [94, 95], Sohn’s likelihood ratio test [96], Ramirez’s long-term spectral
divergence [97] and GMM-based approach with the use of MFCCs [89]. The latter
two techniques are voice activity detection using subband noncircularity [92] and
complete-linkage clustering for VAD [14].

Figure 3.4 presents the results of this comparison under low-, medium- and high-
noise conditions. As the results show, the proposed approach outperformed all other
systems by a fair margin under low- and medium-noise conditions. The absolute re-
duction in the HTER was more than 2% over the formerly best complete-linkage
clustering. The exact achieved values of the HTER were 2.6% and 5.8% under
low- and medium-noise conditions, respectively. Under high-noise conditions, the
complete linkage clustering approach surpassed all other systems, including the pro-
posed SAD approach (by approximately 2%). However, the proposed approach still
outperformed all other systems (by at least 10%). In conclusion, the proposed SAD
approach yielded state-of-the-art results under low- and medium-noise conditions.
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Figure 3.4: A comparison of the proposed approach with other systems under low-,
medium- and high-noise conditions (QUT-NOISE-TIMIT corpus). The contribution
of MR and FAR to HTER bars is displayed by darker and lighter shades, respectively.
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3.9 Evaluation in Real Speech Transcription System
Given the findings and results from all previous experiments, the final proposed SAD
approach was integrated into the TVR monitoring system developed at the author’s
lab in cooperation with the NanoTrix company and thus evaluated in a real speech
transcription system.

Four metrics were applied to evaluate the performance of speech transcription.
The first three, WER, Word Accuracy (WAcc) and Percent Correct (PC), focus on
the quality of transcriptions, while the RTF evaluates the real-time performance.

For evaluation, two datasets of Czech broadcasts have been utilized. The first
dataset represents 4 hours (22,204 words) recorded from a Czech live news TV
channel. Approximately 60% of its content consists of speech segments. The length
of the other dataset is 8 hours, it contains 7,212 words, and speech frames form only
10% of its content. This dataset represents a broadcast of a Czech radio station.

The transcription system employed an acoustic model based on an HMM-DNN
hybrid architecture [79], where the baseline GMM was trained as context-dependent,
speaker-independent and contained 3,886 physical states. 270 hours of clean speech
were employed for training. The DNN hyper-parameters were derived from [98]. The
input features were 39-dimensional FBCs, and the input feature vector had a length
of 11 frames. The linguistic part of the system was composed of a lexicon and a
language model. The lexicon contained 550,000 entries with multiple pronunciation
variants, and the language model was based on bigrams.

Within the performed experiments, both evaluation datasets were transcribed
a) with and b) without the use of the proposed SAD approach. The results are
presented in Table 3.2. They reveal that the utilization of the proposed approach
was advantageous on both evaluation datasets. The yielded PC and WER (WAcc)
show that SAD limited the insertions coming from the non-speech parts and omitted
hardly any speech parts. The proposed approach allowed the transcription system to
operate with improved accuracy and, at the same time, RTF was almost two times,
and more than ten times lower for the first and second evaluation datasets, respec-
tively. Of course, the reason for this difference is that the data in the second dataset
contains fewer speech segments. Finally, the latency was around 2 seconds. In con-
clusion, the transcription system complemented with the proposed SAD approach
can be utilized for online speech transcription without any major delay.

Table 3.2: An evaluation of the proposed approach in a speech transcription system.

dataset SAD WER [%] WAcc [%] PC [%] RTF

live news TV channel yes 12.4 87.6 89.7 0.42
no 12.7 87.3 89.7 0.77

local radio station yes 14.0 86.0 88.5 0.08
no 17.9 82.1 88.4 0.83
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4 Proposed Speaker Change Point Detec-
tion Approach

Inspired by the proposed SAD approach, the final SCP detection approach was pro-
posed in several successive experiments heavily detailed within this chapter. This
development was published in [99], and portions of the paper were reused in the
thesis. Ultimately, this chapter describes the evaluation metrics, training, develop-
ment and evaluation data, experimental evaluation of all steps taken, evaluation on
the COST278 [100] database, and finally, it sets the final SCP detection approach.

4.1 Evaluation Metrics
The evaluation metrics for SCP detection were close to identical to the ones used for
SAD due to the similarity of both tasks. The overall accuracy metrics are the only
exception because framewise evaluation is not particularly valuable for change point
detection (i.e., the main concern is the actual placement of speaker transitions).
Therefore, the metrics for SCP detection can be divided into two subsets: change
point quality metrics and performance metrics. In total, 6 metrics were observed.

For the former subset, four metrics, specifically precision, recall, F-measure, and
δ2/3, were employed. Precision and recall were additionally reported to provide more
information about the errors the decoder makes (i.e., falsely detected change points
result in worsened precision while undetected change points yield worse recall). The
latter group consists of two previously introduced metrics: latency and RTF.

4.2 Data Used
For training, 20,000 recordings, each with an average length of 5 seconds, have been
prepared with the help of automatic Czech TV/radio broadcast transcriptions. Each
of these recordings contains exactly one speaker change point (i.e., the set consists
of 20,000 speaker transitions). These transitions can be divided into four distinct
groups (female to female, female to male, male to female, and male to male). Each of
them is represented by 5,000 change points. Note that each recording was extracted
from a whole utterance, and there are no artificial cuts or changes in channels.

The annotations of this data were generated in a fully automated way. The
frame corresponding to the actual change point, as well as the safety collar frames
around it, were labeled as change points. This safety collar was set to 1 second
(100 frames), i.e., 50 frames before and 50 frames after the actual change point were
considered as speaker transition frames. That is due to the fact that a) determining
the precise change point is quite often an ambiguous task (silence, crosstalk, etc.),
and b) it is necessary to provide DNN training with enough information about the
speaker transitions. The remaining frames were labeled as no change point.
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For development purposes, the Czech train subset of standardized COST278 [100,
101] pan-European broadcast news database has been utilized. Accurate annotations
are provided by the database. For evaluation, the Czech test subset of COST278 has
been employed. It consists of four recordings of different Czech broadcasts (ČT1,
Nova and Prima) in a total length of 90 minutes. It contains not only clean speech
segments but also segments with background noise and jingles. In total, 379 speaker
change points are labeled within the data.

4.3 Reference Results
To obtain reference results with an offline system, publicly available LIUM Speaker
Diarization toolkit [102, 103] was used. The SCP detection portion of the system is
covered by BIC segmentation and BIC clustering, followed by segmentation based on
Viterbi decoding and boundary adjustments. The system is also supplemented with
a pre-trained model fine-tuned for TV and radio broadcasts. During the evaluation,
the LIUM toolkit was operated with an RTF of 0.016, achieving reference results in
F-measure of 84.6% and δ2/3 of 0.13 seconds (see the first row in Table 4.1).

Table 4.1: Summarized results of the proposed SCP detection approach.

approach P [%] R [%] F [%] δ2/3[s] RTF L [s]

LIUM toolkit 89.9 80.0 84.6 0.13 0.016 -
DNN + WFST decoder 59.4 63.6 61.4 0.24 0.022 2.4
+ enhanced data 67.0 70.7 68.8 0.21 0.022 2.3
+ ∆ MFCC 72.8 74.7 73.7 0.19 0.024 1.9
+ CNN 79.3 77.8 78.6 0.17 0.054 1.9
+ 2.5-second context window 80.3 81.8 81.1 0.17 0.054 2.3
+ 1-second long transition model 82.7 81.8 82.2 0.17 0.065 2.9
+ tuned for offline use 86.7 84.4 85.6 0.18 0.079 4.8

4.4 Initial Approach Based on DNN and WFST
The initial SCP detection approach was inspired by the proposed SAD approach
designated for online use. This SCP detection approach was based on DNN trained
as a binary classifier (change point or no change point) and WFST designed as an
online decoder detecting speaker transitions given the output from the DNN.

The binary DNN was trained using the following hyper-parameters: 2 hidden lay-
ers with 64 neurons per layer, the ReLU activation function, a learning rate of 0.08,
mini-batches of size 1024, and 15 epochs. 39-dimensional MFCCs were employed
for the feature extraction. The input feature vector was formed by concatenating
100 previous frames, the current frame, and 100 following frames (i.e., a 2-second
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context window). No local normalization was applied. Note that all the DNNs for
all SCP detection experiments were trained on GPU using the PyTorch framework1.

As stated above, WFSTs were utilized (using the OpenFst library) as an online
decoder. The decoding scheme consists of two transducers. The first one models
the input signal (see Fig. 4.1), while the second one is the transduction model and
represents the change point detection (see Fig. 4.2). It consists of two states, 0
and 1. The transitions between states 0/1 emit labels the start/end change points.
The resulting change point is placed in the middle between these two labels. The
transitions are also penalized by factors P1 and P2, whose values were fine-tuned on
the development set. The decoding process was done in the same way as for SAD,
as described in detail in Sect. 3.4.

1 ...frame 1 T+10 frame 0 frame T

Figure 4.1: A transducer modeling the input signal for SCP detection.

0

no_change

1change/P1
no_change/P2

change

Figure 4.2: A transducer representing the transduction model for SCP detection.

The results are presented in the second row of Table 4.1. They show that the
decoder was capable of operating in real time with an RTF of 0.022. This value, com-
bined with the latency of 2.4 seconds, allowed it to be seamlessly used in an online
environment. Although the achieved results provided a decent starting point, the
precision was particularly weak and overshadowed by LIUM toolkit (i.e., 59.4% vs.
89.9%). Therefore, the next goal was to improve the quality of the SCP detection.

4.5 Enhanced Training Dataset
After thoroughly evaluating the results obtained so far, two types of errors were the
most prominent. The first one was represented by change points omitted due to the
quick artificial transitions between speakers (e.g., director cuts in broadcast news)
while the second type resulted in change points falsely detected because of a silence
longer than 0.5 seconds in speaker-homogeneous segments (caused by deep breaths or
hesitation). As a solution to the first issue, 10 hours of recordings were prepared by
artificially joining utterances of two different speakers. In total, 14,340 change points
with a uniform distribution between all transition types (female-female, female-male,

1https://pytorch.org/
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male-female, and male-male) were thus added to the training dataset. To reduce
the latter type of errors, another 10 hours of training data were prepared. This data
contains speaker-homogeneous segments with frequent occurrences of long silences.

The results gathered in the third row of Table 4.1 show that the use of enhanced
training dataset led to significant improvement in all of the evaluation metrics ob-
served. For example, the F-measure value got boosted up from 61.4% to 68.8%,
while δ2/3 was enhanced to 0.21 seconds. Additionally, the average latency was
slightly reduced, namely, from 2.4 seconds to 2.3 seconds.

4.6 Acoustic Features
In the next set of experiments, several feature extraction techniques were explored.
In addition to the 39-dimensional MFCCs, 13-dimensional MFCCs with ∆ and ∆∆
coefficients (i.e., a 39-dimensional feature vector as well), and 39-dimensional bot-
tleneck features were also utilized. As suggested, e.g., in [104–106], BTN features
were extracted from DNN trained to discriminate physical states (senones) of a
Czech tied-state triphone acoustic model. This deep extractor was trained on 270
hours of clean speech recordings of the Czech language. The hyper-parameters were
set as follows: 5 hidden layers (the third one being the bottleneck layer), 1024
neurons per hidden layer (39 for the bottleneck layer), ReLU activation function
(sigmoid for the bottleneck layer), mini-batches size of 1,024, 0.08 learning rate, and
50 epochs. 39-dimensional FBCs were used as input features, and the input feature
vector was formed by concatenating 5 previous frames, the current frame, and 5 fol-
lowing frames. Local normalization within a one-second window was applied. More
detailed information about the extractor and its performance in spoken language
identification can be found in [107].

The results obtained are shown in Table 4.2. They show that the BTN features
yielded significantly worse results in all of the observed metrics (e.g., the F-measure
value dropped from 68.8% to 56.7%) and that they are more suitable for the tasks
of language and speaker identification. On the contrary, the MFCCs with the ∆
and ∆∆ coefficients outperformed the originally chosen MFCC configuration. Both
the quality and real-time performance of SCP detection improved (e.g., the latency
was reduced from 2.3 seconds to 1.9 seconds because the decoder was able to make
the final decisions more rapidly). A likely reason is additional information provided
by the ∆ and ∆∆ coefficients.

Table 4.2: Results of the experiment exploring various feature extraction techniques.

features P R F [%] δ2/3[s] RTF L [s]

MFCCs 67.0 70.7 68.8 0.21 0.022 2.3
MFCCs + ∆ + ∆∆ 72.8 74.7 73.7 0.19 0.024 1.9
BTNs 53.7 60.1 56.7 0.26 0.070 2.9
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4.7 Convolutional Neural Networks
In the next step, more complex neural network architecture, CNN, was investigated.
This architecture was employed for its feature representation and modeling capabil-
ities. The utilized CNN was composed of two convolutional and two fully connected
layers. The inputs consisted of 201 feature maps (i.e., 2-second context windows)
in size of 39×1. The first convolutional layer was comprised of 105 feature maps at
a size of 39×1, followed by a 3:1 max-pooling layer; the second one had 157 feature
maps at a size of 13×1. The rest of the hyper-parameters remained unchanged.

The results are summarized in the fifth row of Table 4.1. The utilization of the
CNNs yielded an overall improvement in all quality metrics (e.g., the F-measure
value increased from 73.7% to 78.6%). The latency remained constant while the de-
terioration in RTF could be considered negligible (i.e., it is still significantly smaller
than 1). For these reasons, CNNs were thus utilized for all follow-up experiments.

4.8 Context Window Size
The following experiments focused on the size of the input feature window. This
additional context should result in a higher quality of the SCP detection at the cost
of worse latency. Initially, a 2-second window had been chosen. In this experimental
evaluation, the sizes ranging from 1 second up to 4 seconds were explored.

The results are in Table 4.3. As expected, the performance (i.e., F-measure and
δ2/3) was further improved with the additional context (e.g., up to F-measure of
81.7%). On the contrary, the latency of the system was worsened with more context
information by up to 2 seconds. The RTF remained relatively constant.

Table 4.3: Results exploring the influence of the context size on SCP detection.

context [s] (frames) P R F [%] δ2/3[s] RTF L [s]

1 (50-1-50) 71.3 69.4 70.3 0.21 0.053 1.4
1.5 (75-1-75) 71.0 72.8 71.9 0.14 0.053 1.7
2 (100-1-100) 79.3 77.8 78.6 0.17 0.054 1.9

2.5 (125-1-125) 80.3 81.8 81.1 0.17 0.054 2.3
3 (150-1-150) 80.0 83.1 81.5 0.17 0.054 2.6

3.5 (175-1-175) 80.5 82.6 81.5 0.16 0.055 3.1
4 (200-1-200) 80.4 83.1 81.7 0.16 0.055 3.5

4.9 WFST with a Forced Length of Transition
In the next experiments, the aim was to improve the results by introducing WFST
with a forced transition model. This model was designed to reflect the annotation
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style of the training data. As stated in Sect. 4.2, a 1-second window around the
actual change point was labeled as speaker transition frames. However, during the
decoding, the real duration of the transition between two speakers varied greatly.

Therefore, in this experiment, the duration of the transition was forced to be
exactly 1 second at first. For this purpose, the transduction model was modified
(see in Fig. 4.3) to correspond to the duration of the forced transition: it consists
of two main states (0 and 1) and 98 transition states (shown as …).

0

no_change

...change/P1

1

...

change

...change

... change

change

change/P2

Figure 4.3: A transducer representing the transduction model with the forced tran-
sition for SCP detection.

This scheme works as follows: when a speaker change occurs, the decoder moves
frame by frame from state 0 through half of the transition states to state 1. Here,
a new change point label is provided, and the decoder moves backward to state 0,
where it waits until the next change occurs. Note that, during this process, the
penalty factors P1 and P2 (tuned on the development set) are in place as well.

The results are summarized in Table 4.4. First, a CNN with a context size of 2.5
seconds was used. Next, not only the forced length of the transition at 1 second but
also several other values in a range from 0.5 up to 2 seconds were evaluated. The
results show two contradictory trends: the quality of detection increased with the
additional duration, while the RTF and latency values were worsened. Therefore,
the optimal value of the duration strongly depends on the target application.

Table 4.4: Results studying varied durations of forced transitions in the WFST.

forced duration [s] P R F [%] δ2/3[s] RTF L [s]

0.5 77.2 75.2 76.2 0.13 0.057 2.2
1 82.7 81.8 82.2 0.17 0.065 2.9

1.5 83.5 81.5 82.5 0.16 0.072 3.7
2 84.2 81.5 82.8 0.17 0.079 4.5

For online application, the primary limiting factor is latency. In this environ-
ment, with the forced length of 1 second and total latency below 3 seconds, the
proposed approach still allows for performing SCP detection with an accuracy level
approaching the offline reference system (see the penultimate row of Table 4.1). As
such, the online approach is ready to be integrated into the TVR monitoring system.

For offline application, where the latency and real-time processing are not an
issue, it is possible to tune the proposed SCP detection approach to improve the
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achieved results even further. For instance, a system based on CNN, the context
window size of 3 seconds, and WFST with a forced length of 2 seconds yielded an
F-measure value of 85.6% and a δ2/3 value of 0.18 seconds (with the latency at 4.8
seconds). These results are available for comparison in the last row of Table 4.1.

4.10 Evaluation on Whole COST278 Database
Until now, all of the conducted experiments were evaluated only on the Czech test
subset of the COST278 [100, 101] database. In this experiment, both the proposed
approach (tuned for online use) and the reference system were employed for SCP
detection on the whole test dataset. The proposed approach was also trained only
on the COST278 training data. In summary, it utilized MFCCs with the ∆ and ∆∆
coefficients, the CNN instead of the feed-forward DNN, an extended context size
(2.5 seconds), and the WFST-based decoder with a 1-second forced transition. As
suggested, the evaluation was done on all 11 languages of the test dataset, and the
results were compared with the LIUM toolkit. The goal was to see if the proposed
single-pass approach (without clustering) can compete with an offline reference tool.

The results show that both approaches perform on a relatively similar level.
LIUM toolkit yielded an F-measure value of 73.5% and a δ2/3 value of 0.21 seconds,
while the proposed approach scored an F-measure value of 73.1% and a δ2/3 value of
0.15 seconds, with the latency at 2.9 seconds. Figure 4.4 depicts the detailed results
for all COST278 languages. The easiest ones were four closely related Slavic lan-
guages – Czech, Slovenian, Croatian and Slovak. Basque and Spanish for the LIUM
toolkit and Belgian Dutch and Basque for the proposed SCP detection approach
were the most difficult instances.
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Figure 4.4: A comparison of the proposed SCP detection approach (tuned for online
use) with the reference system on the whole COST278 database. Lighter columns
mark the reference system while the darker ones indicate the proposed approach.
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5 Conclusions

Within the scope of the thesis, the tasks of speech activity detection and speaker
change point detection with the focus on modern technologies and their application
in an online monitoring system as speech preprocessors have been explored. A novel
approach has been proposed for speech activity detection as well as for speaker
change point detection. The thesis closely follows and describes the development of
both of these approaches from the initial to the final stages. All the steps taken are
discussed in detail and backed up by a diverse set of experiments. Ultimately, both
of these approaches have been designed to be integrated into the TVR monitoring
system developed at SpeechLab@TUL in cooperation with the NanoTrix company,
and they both support a crucial online mode.

Speech Activity Detection

The final proposed speech activity detection approach is based on two main compo-
nents: a feed-forward deep neural network and a context-based weighted finite-state
transducer. The first component, DNN, functions as a frame classifier (speech/non-
speech and context states), while the latter component, WFST, is an online decoder
which smooths the outputs of the classifier. The network is trained on log filter bank
coefficients of artificially created data by mixing speech and non-speech recordings
at various levels of SNR. The data has also been enriched by various noises. This
design yields state-of-the-art results under low- and medium-noise conditions on the
standardized QUT-NOISE-TIMIT dataset. Moreover, it also operates with a low
real-time factor as well as low latency, which makes it a suitable option for online
processing. An evaluation in a real speech transcription system has yielded a signif-
icant improvement in RTF as well as a slight boost in accuracy of the transcription.

The initial research introducing the main concept and a simple transduction
model was presented in [88] at SIGMAP 2016 held in Lisbon. The improved and final
context-based transduction model was introduced in [86] at ICASSP 2017 organized
in New Orleans. Finally, an extended version detailing more experiments with QUT-
NOISE-TIMIT corpus was published in [87].

Potential improvements could be focused on improving the latency even further.
This could be achieved by, e.g., designing a different transduction model or employ-
ing diverse deep classifiers and fine-tuning their hyper-parameters. Additionally,
more complex features could be crafted. Lastly, enrichment of training data by var-
ious broadcast noises could achieve more robust speech activity detection and yield
even better speech/non-speech segmentation.

Speaker Change Point Detection

The final design of the proposed speaker change point detection approach is inspired
by the proposed speech activity detection design. It consists of two main compo-
nents: a convolutional neural network and a weighted finite-state transducer with a
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forced length of transition. The convolutional neural network plays the role of a bi-
nary frame classifier (change point/no change point) while the weighted finite-state
transducer is utilized as an online decoder smoothing the output of CNN. The de-
coder also enforces the duration of the transition from one speaker to another. The
network is trained on TV/radio broadcast data complemented by artificial exam-
ples to reduce different types of errors. Safety collar frames are labeled around the
actual change points to improve the performance of the system, and MFCCs with
∆ and ∆∆ are used as input features. On data taken from the COST278 database,
the proposed approach achieves results approaching the offline multi-pass reference
system (LIUM Speaker Diarization toolkit) while operating online with low latency.

The whole research explaining in detail the proposed speaker change point de-
tection approach was presented in [99] at Interspeech 2019 conference in Graz.

The performance of the SCP detection approach could be further improved by
implementing online clustering, which should diminish falsely predicted transitions
between speakers. It is a common practice in the literature. An exploration of more
robust features or different deep neural network architectures (e.g., time delay con-
volutional neural networks are gaining in popularity nowadays) could yield progress
as well. Similarly to SAD, other transduction WFST models could be designed.
Finally, additional varied training data could be collected to craft a more robust
approach yielding even better results for diverse languages.

Summary of Research Contributions

Within the thesis, the following has been covered:

• an overview of the current state of the art in both speech activity detection
and speaker change point detection with additional focus on existing toolkits;

• a detailed description of selected approaches to the SAD and SCP detection
relevant to this work or focused on the online application;

• a detailed description of the design and development of the proposed SAD
approach performing robust speech/non-speech detection;

• experimental tuning of the proposed SAD approach;

• an evaluation of the proposed SAD approach and its comparison with various
SAD approaches on the standardized QUT-NOISE-TIMIT corpus;

• an evaluation of the proposed SAD approach in a real speech transcription
system;

• a detailed description of the design and development of the proposed SCP
detection approach performing speaker change point detection;

• experimental tuning of the proposed SCP detection approach;

• an evaluation of the proposed SCP detection approach and its comparison
with a reference system on the standardized COST278 database;
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• an evaluation of the online performance of both SAD and SCP detection ap-
proaches.

Summary of Practical Use Contributions

The main contribution of the thesis to the field of practical applications is the
ability to integrate the proposed speech activity detection and speaker change point
detection approaches into the TVR monitoring system developed at the author’s lab
in cooperation with the NanoTrix company.

The proposed SAD approach is now fully integrated into this TVR monitor-
ing system. Last month, approximately 4,130 days (99,100 hours or 2.3 TB) of
recordings were transcribed in the processing time of 1,333 days (32,000 hours).
Considering the real-time factor of the speech transcriber being around one, the
deployment of SAD (as a preprocessor) resulted in significantly saved processing
time. Approximately two-thirds of the data was non-speech and thus omitted from
the transcription. This was supplemented by a slight increase in accuracy of the
transcriber as the non-speech parts were not transcribed into gibberish.

The proposed SCP detection approach is now ready to be integrated into this
TVR monitoring system. Once done, it will be used to label speaker-homogeneous
segments in multiple online broadcast streams (i.e., it will break the streams into
smaller chunks, each containing only one speaker). By doing this, it will provide
the transcribed data with additional information that could be further utilized and
expanded upon. It will also form a stepping stone for further diarization function-
ality.

In general, both the SAD and SCP detection approaches can be used for any
application that needs speech preprocessing, even the ones requiring online use.

Future Work

The fully implemented speech activity detection and speaker change point detection
approaches are the first steps in the process of designing a speaker diarization system
and successively speaker verification and identification systems and integrating them
into a TVR monitoring system. In conjunction with SAD, the SCP detector pro-
duces an ever-growing amount of labels for speaker-homogeneous speech segments.
These newly defined segments will be utilized for, e.g., language identification (the
online version is already being worked on while the offline version was published
in [107] at Interspeech 2018), gender, or emotion recognition. Their application to
speaker-adaptive speech recognition is also planned in the future.
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