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Abstract

Many problems arising from mathematical modelling in science and technology lead
to solving large and sparse systems of linear algebraic equations. Then a natural
way to solve them is to use iterative methods based on Krylov subspaces such as the
method of conjugate gradients. In order to be efficient, such methods often need
good preconditioners.

We focus on a particular strategy to obtain such preconditioners based on the
generalized Gram–Schmidt process. We study both its theoretical properties as
well as algorithms to compute it approximately and use the resulting factors as
preconditioners. In this way, the thesis couples together two different areas of
numerical linear algebra, i.e., numerical analysis and computational mathematics
that is more focused on real-world computations.

From the theoretical point of view, the generalized Gram–Schmidt process in
exact arithmetic computes a factorization of the inverse of the corresponding ma-
trix. In other words, it can be formally considered as a direct method. Here we
prefer to see the process as an incomplete scheme that produces a factorized sparse
approximate inverse of the matrix. The generalized Gram–Schmidt process was
introduced in a couple of important classical papers as [16, 23]. Its use as an in-
complete scheme for computing approximate inverse preconditioning was proposed
by Benzi et al. [2] and later enhanced in [1] (2000). The incompleteness is achieved
by a dropping strategy based on discarding entries that are in some sense small.

We analyze the generalized Gram–Schmidt process in finite precision arithmetic.
This analysis is a continuation of the paper by Rozložńık et al. [31] (2012). For
example, we extend the generalized Gram–Schmidt process by pivoting that en-
ables an improvement of some error bounds. In particular, differences between
component-wise and norm-wise error bounds are highlighted.

Both theoretical considerations as well as experimental observations lead to a
new dropping technique that behaves similarly to rounding in finite precision arith-
metic. The new dropping technique introduced by Kopal et al. [26] (2013) is studied
more in detail and derived in a different way.

The main goal is to present a new dropping technique that may generally help
to better understand of the interplay between floating-point analysis and numerical
aspects of preconditioning by incomplete decompositions.

Keywords: approximate inverse preconditioning, Gram–Schmidt process, pivot-
ing, sparse matrices, incomplete algorithms, dropping techniques, iterative methods
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Abstrakt

Mnoho úloh matematického modelováńı ve vědě a technice vede na řešeńı velkých a
ř́ıdkých soustav lineárńıch algebraických rovnic. Takové úlohy je přirozené řešit po-
moćı iteračńıch metod založených na Krylovovských podprostorech, což je např́ıklad
metoda sdružených gradient̊u. Aby dané řešeńı bylo efektivńı, iteračńı metody
potřebuj́ı dobré předpodmı́něńı.

Zaměř́ıme se na na konkrétńı strategii výpočtu takových předpodmı́něńı, které
jsou založeny na zobecněném Gram–Schmidtově procesu. Zabýváme se jak studiem
teoretických vlastnost́ı úplného algoritmu tak i jeho neúplnou verźı, kterou použ́ıváme
pro výpočet faktor̊u předpodmı́něńı. T́ımto zp̊usobem se zde proĺınaj́ı dvě r̊uzné
discipĺıny numerické lineárńı algebry, numerickou analýzu a výpočetńı matematiku
se zaměřeńı na reálné výpočty.

Z teoretického hlediska Gram–Schmidt̊uv algoritmus v přesné aritmetice poč́ıtá
faktorizaci inverze př́ıslušné matice. Může být proto formálně považován za př́ımou
metodu. Zde se budeme zabývat předevš́ım jeho neúplnou verźı, coby algoritmem
pro výpočet přibližné ř́ıdké faktorizace inverze matice. Zobecněný Gram–Schmidt̊uv
proces byl představen v článćıch [16, 23]. Jako neúplný algoritmus pro výpočet
přibližné inverze předpodmı́něńı byl navržen Benzim et al. [2] a později byl koncept
rozš́ı̌ren v [1]. Neúplnost je realizována technikou odvrhováńı prvk̊u, ktere jsou v
nějakém smyslu malé.

Zabýváme se analýzou zobecněného Gram–Schmidtova procesu v aritmetice s
konečnou přesnost́ı. Analýza navazuje na článek Rozložńıka et al. [31] (2012), zde je
rozš́ı̌rena např́ıklad o pivotaci, která umožnila vylepšit některé horńı odhady chyb.
Zejména rozd́ıly mezi horńımi odhady chyb po prvćıch a v normě jsou zd̊urazňovány.

Jak teoretické tak experimentálńı úvahy daly základ nové technice odvrhováńı
prvk̊u, která vykazuje stejné vlastnosti jako zaokrouhlováńı v aritmetice s konečnou
přesnost́ı. Tato nová technika odvrhováńı představená Kopalem et al. [26] (2013)
je zde studována detailněji a odvozena jiným zp̊usobem.

Hlavńım ćılem je prezentovat techniku odvrhováńı prvk̊u, která může obecně
napomoci lepš́ımu pochopeńı spojitosti mezi analýzou v aritmetice s konečnou
přesnost́ı a numerickými aspekty predpodmı́něńı poč́ıtaných pomoćı neúplných rozk-
lad̊u.

Kĺıčová slova: předpodmı́něńı přibližnými inverzemi, Gram–Schmidt̊uv proces,
pivotace, ř́ıdké matice, neúplné algoritmy, odvrhovaćı techniky, iteračńı metody
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Chapter 1

Introduction

1.1 A brief background

A lot of challenging problems in science and industrial applications lead to large
systems of linear algebraic equations. It happens very often that these systems
are sparse. Such applications include, for example, modeling in climate forecasts,
geology, quantum chemistry, circuit design, aerospace computations and many oth-
ers. One needs to get a solution of acceptable accuracy within a reasonably short
time. This is especially true in real-time simulations. An example is the problem
of weather forecast where the need to obtain results very fast is absolutely cru-
cial. Computation of large and sparse systems of linear algebraic equations that
arise from discretization partial differential equation (PDE) is another important
area with the need to solve systems very quickly in particular if they result from
sequences from solving nonlinear problems.

There are two basic classes of methods for solving large and sparse systems of
linear algebraic equations: direct and iterative ones. Direct methods have been
developed over time from the basic scheme of the Gaussian elimination. Their main
idea is to solve the system as accurately as the computational hardware and soft-
ware allow in a finite number of steps. This often requires a very large amount of
work. Iterative methods represent a wide class of methods that obtain the solution
by generating a sequence of successive approximations. They are appropriate when
the direct methods are prohibitively expensive and, sometimes, they are the only
possible choice in practice. An important subclass of iterative methods is repre-
sented by the Krylov subspace methods. This subclass is based on forming a basis
of the subspace that involves successive powers of the system matrix and gets an
approximate solution typically from solving a certain low-dimensional optimization
problem. The complicated nonlinear nature of the process implies that their con-
vergence behavior may be not fully understood. In general, one can say that direct
methods come with robustness but at the expense of additional computational work.
On the other hand, iterative methods provide very often a sequence of cheap steps
but they may suffer from slow convergence or even stagnation.

Numerical methods are also strongly linked with computer architectures. Al-
though different computers perform various operations of linear algebra with differ-
ent efficiencies, a common feature shared by the vast majority of computers is that
quantities are computed only approximatively with a finite precision. The knowl-
edge of the arithmetic is often important in design and application of numerical
methods.
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1.2 Scientific framework of the thesis

In many applications there is no need to find highly accurate solutions of their
subproblems. Instead, obtaining their rough approximations is sufficient. This is
an important reason why iterative methods may be methods of choice. However,
in order to increase their robustness, the problems should be suitably transformed.
Such a transformation is called preconditioning and it should lead to solving prob-
lems that are more tractable by the iterative method than the original ones. Note
that preconditioning may mean completely different transformations for different
problems with their specific properties.

Properties of systems of linear algebraic equations depend on several factors, e.g.,
on physics of the considered application or methods of the problem discretization.
In our description we concentrate on a compact introduction into preconditioning
that covers just the case when the system matrix is symmetric and positive definite
(SPD). Main contributions of this thesis restrict to this case.

We consider the generalized Gram–Schmidt process (GGS), that is the Gram–
Schmidt process with energetic inner product induced by an SPD matrix A. Numer-
ical behavior of all main orthogonalization schemes including Householder, Givens
QR, and standard modified and classical Gram–Schmidt decompositions is well un-
derstood for A = I [24, 9, 17, 18, 33]. This is not the case, however, for generalized
schemes with A 6= I. For example, the QR decomposition for solving weighted least
squares problems is studied in [21, 19, 20]. The modified QR decomposition with
a non-standard inner product with an SPD matrix, where matrix is given in the
factored form as A = LLT (its Cholesky factor is known a priori) was studied in
[38], see also, [37, 36]. Several orthogonalization schemes are analyzed in [31] and
also in [29].

Independently of the papers on the Gram–Schmidt process, an incomplete de-
composition based on the general oblique GGS orthogonalization process has been
introduced in [2]. It is called AINV (Approximate INVerse) and is based on a gener-
alization of the orthogonalization scheme that is close to the classical Gram-Schmidt
process. Further development of AINV has led to its stabilized variant so-called
SAINV [1]. The stabilization was performed both in terms of the orthogonalization
scheme (changed to the modified GGS process) and in terms of appropriate compu-
tation of the normalization coefficients (one sided (non-stabilized) versus stabilized
[1, 4]). It was demonstrated that both AINV and SAINV may provide successful
preconditioning, in particular for some classes of problems. On the other hand, pro-
cess to obtain appropriate dropping parameters that balance sparsity and accuracy
of the approximate inverse has been restricted to a trial-and-error approach.

Up to now, no sufficiently general theory for preconditioning by incomplete
factorizations has been proposed. Research in this field even for preconditioning of
general SPD problems is focused either to analyzing the behavior of algorithms in
finite precision arithmetic or to development of incomplete schemes and it covers
both theoretical and practical aspects of the problem very rarely. This note applies
to approaches based on both the standard or generalized Gram–Schmidt process. It
may be caused by the fact that an analysis of the most common dropping techniques
that control discarding of the small entries is difficult. Typically, errors that arise
from dropping modify the schemes in a different way than errors due to rounding
in the floating-point arithmetic.

In contrast to the SPD case, there exist nice contributions devoted to its special
cases (such as finite difference matrices). An important work devoted to the mod-
ified incomplete Cholesky factorization [22] that analyzes the condition number of
the preconditioned system was presented by Ivar Gustafsson. An even earlier pio-
neering work is due to Dupont et al. [15]. Another theoretical approach deals with
the support graph preconditioning [10, 5].

6



Lack of theory for preconditioning by incomplete decompositions has been our
main motivation. We apply the approach based on rounding error analysis to pre-
conditioning, although it uses only one specific preconditioning strategy, namely
that based on the generalized Gram–Schmidt process. The theory and experimental
observations result into a new dropping strategy that seems to be rather efficient. A
set of numerical experiments then demonstrates that additional techniques as scal-
ing and pivoting may significantly improve properties of the preconditioner. Last
but not least, we believe that analyzing floating-point properties of decompositions
may also lead to development of other types of algebraic preconditioners.

1.3 Outline of the thesis

The thesis is divided into four parts. The first part is the introduction, it also
involves chapter introduction, that brings an insight into main topic of the thesis.
The second part is devoted to solve the systems of linear algebraic equations with
a symmetric and positive definite matrix. We provide a survey of direct and itera-
tive solution methods and preconditioning techniques. The third part is focused on
the generalized Gram-Schmidt process. We focus to the exact arithmetic identities
and pivoting, we also deal with analysis in finite precision arithmetic, we verify
theoretical results on simple numerical experiments, we introduce a new approach
of construction of the incomplete schemes and finally we present numerical experi-
ments that verifies properties of the previously introduced incomplete scheme. The
fourth part contains summary, possible directions of the research in the future, open
questions and also the list of related publications of the author.

1.4 Finite precision arithmetic

Representation of the real numbers is on computer restricted to a finite subset.
More details can be found in IEEE 754 standard (current version IEEE 754-2008)
that defines the floating point arithmetic. Probably the mostly used data type
for scientific application is data type with double precision that uses 64 bit data
representation that corresponds to the relative machine precision ε ≈ 1.1 · 10−16

(and the unit roundoff u = 2ε ≈ 2.2 · 10−16 ). IEEE 754 standard also guaranties
result of the each elementary operation (+,−,×, / ) and also for the square root

√
·

is correctly rounded value of the exact operation.
Consider two real numbers α and β and an elementary floating point operation

fl[· op ·] in finite precision arithmetic. If the operation is well defined it holds

|fl[α op β]| ≤ (α op β)(1 + δ), |δ| ≤ u, (1.1)

similarly also for square root. The standard IEEE 754 also includes extensive recom-
mendations for advanced exception handling, additional operations (such as trigono-
metric functions), expression evaluation, and for achieving reproducible results.

Using (1.1) one can establish error bounds for various operations of linear alge-
bra. E.g., for matrix-vector multiplication Mv, where M ∈ Rm×n and v ∈ Rn, we
have

|fl[Mv]−Mv| ≤ O(n)u|M ||v|, (1.2)

where |·| denotes the absolute value. Note that this notation can be used not only for
scalars, but also for vectors and matrices. The expression O(n) denotes low-degree
polynomials in n. Rounding error bounds for the matrix-vector multiplication can
be also formulated by using spectral and Euclidean norms of the matrices and
vectors, respectively, (both denoted by ‖ · ‖) as

‖fl[Mv]−Mv‖ ≤ O(n3/2)u‖M‖‖v‖. (1.3)

7



Rounding errors for additional linear algebra operations are developed in Chapter
3. In general, for upper bound for rounding errors, coefficients of the polynomial
(e.g., in (1.2), (1.3)) in terms O(·) are very small. Norm-wise error bounds as (1.3)
may to overestimate actual result. Throughout the thesis, we use only the bounds
for the rounding errors that are linear in the unit roundoff u and do not consider
the higher order terms.

1.5 System of linear algebraic equations

A system of linear algebraic equations can be written in the form

m∑
j=1

ai,jxj = bi, i ∈ 1, . . . , n

where the coefficients ai,j are scalars. The solution components are denoted by
x1, x2, . . . , xn and b1, b2, . . . , bn denote the components of the right-hand side vector.
The system can be written in a more compact form using the matrix notation as

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (1.4)

A = [ai,j ] =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm

 .

Here we will always deal with the case where A is a real, square (m ≡ n) and
nonsingular matrix (R(A) = Rn). Let us characterize the three main classes of
such matrices by their properties and properties of their singular values σi(A) and
eigenvalues λi(A):

1. A is symmetric and positive definite (SPD)

• (∀i, j)(ai,j = aj,i) and

• (∀i)(λi(A) > 0)⇔ (∀x 6= 0)(xTAx > 0),

• note that in this case we always have (∀i)(σi(A) = λi(A)).

2. A is symmetric and generally indefinite

• (∀i, j)(ai,j = aj,i) thus

• (∀i)(λi(A) ∈ R \ {0}),
• similarly as above, we have (∀i)(σi(A) = |λi(A)|).

3. A is non-symmetric

• (∀i, j)(ai,j S aj,i),

• (∀i)(λi(A) ∈ C \ {0 + 0 i}),

• (∀i)(σi(A) S |λi(A)|).

We mostly consider solving systems of equations with symmetric and positive defi-
nite matrices.
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Chapter 2

Generalized Gram–Schmidt
process in exact arithmetic

Let Z(0) = [z
(0)
1 , . . . , z

(0)
n ] ∈ Rn×n be a nonsingular matrix. The non-generalized GS

process (orthogonalization) provides decomposition of the matrix Z(0) in the form
Z(0) = QR where Q ∈ Rn×n is an orthogonal matrix QTQ = I and R ∈ Rn×n is
an upper triangular matrix and can be seen as the Cholesky factor of the matrix
(Z(0))TZ(0). Matrix Q is in this case computed by orthogonalization column of the
matrix Z(0) (using orthogonal projections that employ the Euclidean inner product)
against previously computed column vectors in Q.

The GGS process uses the non-standard inner-product induced by an SPD ma-
trix A ∈ Rn×n. Special case A = I corresponds to the (standard) Euclidean inner-
product. Let us deal with identities for GGS, we have decomposition of the matrix
Z(0) in the form Z(0) = ZU where Z ∈ Rn×n has A-orthogonal columns such that
ZTAZ = I. Matrix U ∈ Rn×n is an upper triangular matrix and can be seen as the
Cholesky factor of the matrix (Z(0))TAZ(0) with the norm and minimum singular
value

‖U‖ = ‖A1/2Z(0)‖,
σn(U) = σn(A1/2Z(0))

and for the condition number κ(U) it holds κ(U) = κ(A1/2Z(0)). Due to the
orthogonality relation (A1/2Z)T (A1/2Z) = I, we have for the norm and minumum
singular values of Z

‖Z‖ = ‖A−1/2‖ = ‖A−1‖1/2,
σn(Z) = λ1/2n (A−1) = ‖A‖−1/2.

Since Z = Z(0)U−1 the product ZZT can be written as

ZZT = Z(0)[(Z(0))TAZ(0)]−1(Z(0))T .

Then AZZT represents the oblique projector onto R(AZ(0)) and orthogonal to
R(Z(0)). Similarly, ZZTA is the oblique projector onto R(Z(0)) and orthogonal
to R(AZ(0)). In the considered case we always have ZZT = A−1 and AZZT =
ZZTA = I.

In order to have all computations in the GGS process well defined, the matrix A
has to be symmetric and positive definite, but note that this type of decomposition
can be analyzed in the symmetric and indefinite case as well, see, e.g., [30].
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2.1 The variants of the generalized Gram–Schmidt
process

Let us summarize the main identities, matrices Z = [z1, . . . , zn] and U = [αj,i]
produced by the GGS process satisfy the following identities

• ZU = Z(0)

• UTU = (Z(0))TAZ(0)

• ZTAZ = I

• ZZT = A−1

We introduce also the notation for matrices with an extra subscript k (e.g., Zk, Uk),
that are leading principal submatrices corresponding to the row indices i = 1, . . . , k
and column indices i = 1, . . . , k (of the matrices Z(0), Z, U, . . . ). As well as for the
leading principal submatrices of the product of the matrices we use notation [ · ]k,
e.g, [ZU ]k. If we assume Z(0) = I, all the previously mentioned identities hold

also for Z
(0)
k , Zk, Uk, and Ak. Then also for the Cholesky factor U of the matrix

A it holds U−1 = Z and moreover Z represents the inverse triangular factor in the
factorization A−1 = ZZT (this is also true for Z(0) in the upper triangular form).

Let us describe all the variants of the GGS process. The A-inner product of two
vectors is here denoted by 〈·, ·〉A. The modified GGS process is given in Algorithm 1
in the so-called left-looking form, which means that the algorithm builds up the

Algorithm 1 Modified version of the GGS process (left-looking)

for i := 1, . . . , n do
for j := 1, . . . , i− 1 do

αj,i := 〈z(j−1)i , zj〉A
z
(j)
i := z

(j−1)
i − αj,izj

end for
αi,i := 〈z(i−1)i , z

(i−1)
i 〉1/2A

zi := z
(i−1)
i /αi,i

end for

column of the factor U by applying updates from left, using the already computed
columns. Another variant of the modified GGS is the right-looking form that is given
by Algorithm 2, which builds up the factor U by rows. The right-looking form of the

Algorithm 2 Modified version of the GGS process (right-looking)

for j := 1, . . . , n do

αj,j := 〈z(j−1)j , z
(j−1)
j 〉1/2A

zj := z
(j−1)
j /αj,j

for i := j + 1, . . . , n do

αj,i := 〈z(j−1)i , zj〉A
z
(j)
i := z

(j−1)
i − αj,izj

end for
end for

algorithm may be beneficial if, for example, pivoting (column permutations in Z(0)

in order to obtain U in a special form as we will see later) is needed. On the other
hand, all the not yet orthogonalized vectors are projected in every major step j of
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the algorithm. This can be seen as a disadvantage for some computer architectures.
In order to increase the amount of independent computations, Algorithm 1 can
be reformulated to the scheme denoted here as Algorithm 3, which is also called
the classical GGS process. The above mentioned variants of the GGS process are

Algorithm 3 Classical version of the GGS process

for i := 1, . . . , n do
for j := 1, . . . , i− 1 do

αj,i := 〈z(j−1)i , zj〉A
end for
for j := 1, . . . , i− 1 do

z
(j)
i := z

(j−1)
i − αj,izj

end for
αi,i := 〈z(i−1)i , z

(i−1)
i 〉1/2A

zi := z
(i−1)
i /αi,i

end for

generally well known, but the GGS process is closely related to another possible
algorithm. It has been published in [2] as an incomplete scheme for computing the
factorized approximate inverse. Here, it is called the AINV orthogonalization and
is given in Algorithm 4.

Algorithm 4 AINV orthogonalization process

for i := 1, . . . , n do
for j := 1, . . . , i− 1 do

αj,i := 〈z(j−1)i , z
(0)
j 〉A/αj,j

z
(j)
i := z

(j−1)
i − αj,izj

end for
αi,i := 〈z(i−1)i , z

(i−1)
i 〉1/2A

zi := z
(i−1)
i /αi,i

end for

There are several possibilities to compute the normalization coefficients (diago-
nal entries of the matrix U). The most natural formula

αi,i = 〈z(i−1)i , z
(i−1)
i 〉1/2A (2.1)

is common for all algorithms here. We call it the stabilized form (it has been
proposed as a stabilization of the AINV algorithm in [1]). Another possible variant
(originally proposed in [2]) is expressed by the formula motivated by the A-inner
product in the classical GGS algorithm that is defined as

αi,i = 〈z(i−1)i , z
(0)
i 〉

1/2
A , (2.2)

we call it the non-stabilized form. The difference between these two approaches has
been already discussed in [1]. The identity UTU = (Z(0))TAZ(0) allows us also
to compute diagonal entries in the same fashion as in the Cholesky factorization
algorithm as follows

αi,i =

〈z(0)i , z
(0)
i 〉A −

i−1∑
j=1

α2
j,i

1/2

. (2.3)

11



2.1.1 Pivoting in the GGS process

In the exact arithmetic, the pivoted GGS process, that is the process where column
permutations of Z(0) are involved, produces matrices Z and U so that

• ZU = Z(0)P

• UTU = (Z(0)P )TAZ(0)P

• ZTAZ = I

• ZZT = PA−1PT

where P is a permutation matrix. The most common way of pivoting considers
magnitudes of the diagonal entries in U . We deal in more detail with pivoting that
involves column permutations of Z(0) such that for the entries in U then holds

α1,1 ≥ α2,2 ≥ . . . ≥ αn,n > 0, (2.4)

α2
i,i ≥

j∑
k=i

α2
k,j , j = i+ 1, . . . , n. (2.5)

Note that both inequalities (2.4) and (2.5) also imply

αj,j > |αj,k|, j = 1, . . . , n, k = j + 1, . . . , n. (2.6)

The simplest way to obtain the Cholesky factor U in this form is to use the modified
GGS in the right-looking form, see, Algorithm 2. When the whole kth row of the

matrix U is computed and after projections of the vectors z
(k−1)
i , i = k + 1, . . . , n

onto A-orthogonal complement of zk, we have the intermediate vectors z
(k)
i . Pivot

((k + 1, k + 1) entry in the matrix U) then corresponds to the magnitude of the
largest A-norm of the intermediate vectors such that

‖z(k)l ‖A = max
k+1≤i≤n

‖z(k)i ‖A, (2.7)

where l is the index corresponding to the ‖z(k)i ‖A largest in magnitude. Using

formula (2.7) then leads to permutation of the column vectors z
(k)
l and z

(k)
k+1.

It is also possible to propose another approach to get quantities ‖z(k)i ‖A. We
introduce a specific combination of the modified GGS algorithm in the left-looking

form and the Cholesky factorization where quantities ‖z(k)i ‖A are computed simi-
larly as it has been noted in (2.3). Formula

‖z(k)i ‖
2
A = ‖z(0)i ‖

2
A −

k∑
j=1

〈zj , z(0)i 〉
2
A = ‖z(k−1)i ‖2A − 〈zk, z

(0)
i 〉

2
A, k < i ≤ n (2.8)

shows how the computed vector zk can be used to update the A-norms of the
vectors, which have not been A-orthogonalized yet. Pivot entry can be then chosen
as for right-looking modified GGS using (2.7). In this way, especially for Z(0) = I,
the considered pivoting is easy and cheap to compute. Pivoting (that is cheap
to compute) has been already used, e.g., in [27]. Using the recursive (as defined

rightmost in formula (2.8)) computation of ‖z(k)i ‖A ; quantities ‖z(k−1)i ‖2A are known
from previous major step, they are updated by squares of the entries of the vector
Azk (for Z(0) = I).

The Algorithm 1 extended by the use of (2.8) that we call the Cholesky-based
pivoting, is given by Algorithm 5. The entries of the vector

d(i−1) = [d
(0)
1 , d

(1)
2 , . . . , d

(i−2)
i−1 , d

(i−1)
i , d

(i−1)
i+1 , . . . , d(i−1)n ]
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Algorithm 5 Modified version of the GGS process (left-looking) employing the
Cholesky-based pivoting

P (0) = I
d(0) := (d

(0)
1 , d

(0)
2 , . . . , d

(0)
n ) = (a1,1, a2,2, . . . , an,n)

for i := 1, . . . , n− 1 do
if i > 1 then

for j := i, . . . , n do

d
(i−1)
j = d

(i−2)
j − 〈zi−1, z(0)j 〉2A

end for
end if
l = argmax

i≤j≤n
(d

(i)
j )

Z(0) = swap columnsi,l(Z
(0))

P (i) = swap columnsi,l(P
(i−1))

swap entriesi,l(d
(i))

for j := 1, . . . , i− 1 do

αj,i := 〈z(j−1)i , zj〉A
z
(j)
i := z

(j−1)
i − αj,izj

end for
αi,i = 〈z(i−1)i , z

(i−1)
i 〉1/2A

zi = z
(i−1)
i /αi,i

end for
P = P (n−1)

plays the same role as quantities ‖z(k)i ‖2A in formula (2.8), in this way are also up-
dated. Positions in the vector d(i−1) correspond to the column vectors in Z(0)P (i−1),

where P (i−1) is the i−1 iteration to P . The formula l = argmax
i≤j≤n

(d
(i−1)
j ) finds the in-

dex of the pivot entry having the largest magnitude in the ith step (satisfying (2.7)).
The swap operations permute the corresponding entries or columns with respect to
the position of the pivot. Moreover, swap operations interchange also the indices
of the permuting quantities. Note that Z(0) in Algorithm 5 is rewritten in every
step. The permutation introduced in Algorithm 5 can be interpreted as running
the generalized Gram–Schmidt process with Z(0) that is equal to the corresponding
permutation matrix P instead of the standard choice Z(0) = I or equivalently as
running the generalized Gram–Schmidt process where Z(0) = I with the already
permuted matrix A′ = PTAP . The permutation matrix P is not a priori known.
The column permutations in P (i−1) are performed on-the-fly by employing (2.8)
and (2.7). Consequently, for P 6= I, Z does not have the upper triangular form
even for Z(0) = I. In this case we have PTZ = U−1.
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Chapter 3

Generalized Gram–Schmidt
in finite precision arithmetic

In order to distinguish between the quantities computed in finite precision arith-
metic and their exact arithmetic counterparts, we denote the quantities computed
in finite precision arithmetic by an extra upper bar (e.g., Z̄, Ū).

For initial vector basis Z(0) in a general form it has been shown in [31] that
the loss of A-orthogonality ‖Z̄TAZ̄ − I‖ can be significantly different for various
numerical implementations. Despite this fact, it has been also shown in [31] that
their left residuals ‖Z̄Ū − Z(0)‖ is approximately of the same order of magnitude.

From now, we will deal with the special case, where the initial vector basis has
the form Z(0) = I. Moreover, some proofs in this chapter could be done only by
assuming that the GGS algorithm uses pivoting such that it holds (2.4) and (2.5)
for the entries of Ū .

In this chapter we consider component-wise error bounds for the left residual
|Z̄Ū − I|, and the right residual |Ū Z̄ − I|, error bounds in the inverse |Ū−1 − Z̄|,
and the error bounds for Cholesky factorization |A− ŪT Ū |.

All the variants of the GGS process that are described in Section 2.1 differ in
the definition of the A-orthogonalization coefficients αj,i. Therefore, they give in
finite precision arithmetic different resulting matrices Ū = [ᾱj,i].

On the other hand, the matrix Z̄ (obtained by inverting the matrix Ū in finite
precision arithmetic) is computed in the same way for all algorithms. The algo-
rithmic scheme to compute Z̄ corresponds numerically to the left-looking scheme
(so-called j-version) [25] (or on the numerically equivalent so-called k-version [25]
for right-looking modified GGS) for computing inverse X = Z̄ of the upper trian-
gular matrix Ū from the equation XŪ = I. Therefore, some proofs can be done in
a common way for more variants of the GGS process.

Assume the following bordering notation using the matrices

Ūk =

(
Ūk−1 ūk

0 ᾱk,k

)
, Z̄k =

(
Z̄k−1 w̄k

0 β̄k,k

)
. (3.1)

The last column vector in Z̄k is computed in finite precision arithmetic using
the already computed block Z̄k−1 and the last column vector in Ūk. Therefore, for
the quantities w̄k and β̄k,k we can write for k = 1, . . . , n:

β̄k,k =
1

ᾱk,k
+ δβ̄k,k, |δβ̄k,k| ≤

u

ᾱk,k
, (3.2)

and for k = 2, . . . , n:

w̄k = −Z̄k−1ūkβ̄k,k + δwk, |δwk| ≤ O(k)u|Z̄k−1||ūk|β̄k,k. (3.3)
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In order to be consistent with the already introduced notation, naturally, it holds

z̄k =


w̄k

β̄k,k
0
...
0


}
n− k.

3.1 Right residuals

Lemma 3.1. Let Z̄k and Ūk be approximations to the factors Zk and Uk, respec-
tively, that are computed by Algorithm 5 (or any other GGS algorithm without
iterative refinement with pivoting such that it holds (2.4) and (2.5) for the entries
of Ū) in finite precision arithmetic with the unit roundoff u. Let D̄k be the diagonal
matrix having the same diagonal as Ūk. Then

ŪkZ̄k = Ik + ∆E
(2)
k , (3.4)

where the matrix of right residuals ∆E
(2)
k can be bounded by

|∆E(2)
k | ≤ O(k)u|Ūk||Z̄k||Ūk|D̄−1k . (3.5)

Proof. The proof is by using induction. For k = 1, it holds trivially, similarly as for
the left residuals. For k = 2, . . . , n, we using (3.1) get

ŪkZ̄k − Ik =

(
Ūk−1 ūk

0 ᾱk,k

)(
Z̄k−1 w̄k

0 β̄k,k

)
− Ik =

=

(
Ūk−1Z̄k−1 − Ik−1 Ūk−1w̄k + ūkβ̄k,k

0 ᾱk,kβ̄k,k − 1

)
.

Assume the results (3.5) is true for matrices of the order k − 1. After some manip-
ulations and using (3.2) and (3.3), we obtain

Ūk−1w̄k + ūkβ̄k,k = Ūk−1(−Z̄k−1ūkβ̄k,k + δwk) + ūkβ̄k,k

= (Ik−1 − Ūk−1Z̄k−1)ūkβ̄k,k + Ūk−1δwk

≤ |Ik−1 − Ūk−1Z̄k−1||ūk|β̄k,k +O(k)u|Ūk−1||Z̄k−1||ūk|β̄k,k
≤ O(k)u|Ūk−1||Z̄k−1||Ūk−1|D̄−1k−1|ūk|β̄k,k

+ O(k)u|Ūk−1||Z̄k−1||ūk|β̄k,k
= O(k)u|Ūk−1||Z̄k−1D̄k−1| |D̄−1k−1Ūk−1|︸ ︷︷ ︸

≤O(1)

|D̄−1k−1ūk|β̄k,k

+ O(k)u|Ūk−1||Z̄k−1||ūk|β̄k,k
= O(k)u|Ūk−1||Z̄k−1||ūk|β̄k,k. (3.6)

Note that we assume the algorithm with pivoting such that it holds (2.4) and (2.5)
for the entries of Ū . Therefore we have |D̄−1k−1Ūk−1| ≤ 1 ≤ O(1). Inequality (3.6)
holds for k = 2, . . . , n and the result (3.5) is proved.

3.2 Norm-wise vs. component-wise error bounds

Component-wise error bounds may be, in general, tighter than norm-wise ones, it
has been already mentioned in Chapter 1. Let us deal with this problem more in
details.
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3.2.1 Skeel’s condition number

The difference between norm-wise and component-wise error bounds can be ex-
plained via the condition number introduced by Skeel [32].

Definition 3.1. Let B ∈ Rn×n be a nonsingular matrix. Then

cond(B) ≡ ‖|B−1||B|‖∞ (3.7)

is the Skeel’s condition number.

From Definition 3.1, it is easy to see that cond(B) is invariant under row scaling
of B. It means cond(B) = cond(DsB) for all the diagonal matrices Ds. It is also
straightforward to show that

cond(B) ≡ min
DR diagonal

(κ∞(DRB)) . (3.8)

Remark 3.1. Note that, in general, we have

cond(B) 6= cond(B−1).

For the Skeel’s condition number cond(·), condition number induced by infinity
norm κ∞(·), and condition number (with respect singular values) κ(·) we can put
down trivial inequality

cond(B) ≤ κ∞(B) ≤ nκ(B). (3.9)

The optimal row scaling matrix in (3.8) is given by [DR]j,j =
∑n

i=1[|B|]j,i. Thus
the sum of the absolute values of the entries in the rows of the scaled matrix DRB
are equal to one. In [11] can be found following inequality

κ∞(B) ≤ κ∞(DR)cond(B), (3.10)

that can be also rewritten using spectral norms as

κ(B) ≤ nκ(DR)cond(B). (3.11)

3.2.2 Right residuals from the point of view of the Skeel’s
condition number

The right hand side of (3.5) can be rewritten as

|Ū ||Z̄||Ū |D̄−1 = D̄|D̄−1Ū ||Z̄||Ū |D̄−1. (3.12)

Using ‖D̄−1Ū‖ ≤ O(1) and the Cauchy–Schwarz inequality, we get

‖|Ū ||Z̄||Ū |D̄−1‖ ≤ O(n1/2)κ(D̄)cond(Ū). (3.13)

The inequality (3.11) with Ū substituted for B and D̄ substituted for DR is similar
to (3.13). There are different constants (O(n) vs. O(n1/2)) because DR and D̄
differs at most by the factor O(n1/2). Both inequalities (3.11) and (3.13) were
obtained via the Cauchy–Schwarz inequality, therefore the right hand sides may
tend to overestimate. Relation between ‖|Ū ||Z̄||Ū |D̄−1‖ and κ(Ū) remains an open
problem at present time.

3.3 Summary of the error bounds

The error bounds introduced here represent a complement (or the component-wise
counterparts) of the error bounds developed in [31]. In particular, in thesis, we are
focused on the GGS algorithm with pivoting. We summarize all the developed error
bounds in a compact form in Table 3.1.
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|
≤
O

(n
)u
|Ū
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|D̄
−
1

≤
O

(n
)u
( |ŪT
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|Ū
||P̄

T
Z̄
||Ū
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|))

(s
ta

b
il

iz
ed

)

m
o
d

ifi
ed

G
G

S
≤
O

(n
)u
|P̄

T
Z̄
||Ū
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Chapter 4

Generalized Gram–Schmidt
process as an incomplete
scheme

This chapter is devoted to the computation of the incomplete GGS process. We
assume that the incomplete GGS process may provide good approximations that
can be used to precondition an iterative method. As a theoretical motivation, we
consider the complete GGS process, that is, the process computed in the floating-
point arithmetic without any dropping.

In particular, we will deal with value-based dropping strategies where the en-
tries in the computed factors or intermediate quantities that exceed a prescribed
threshold are dropped. It is clear that the success of such approaches often depends
on an ability to find a suitable threshold. This can be highly problem dependent
for dropping based on magnitudes even if the entries are dropped comparing their
magnitudes relatively to well-chosen quantities connected to the matrix.

The reason is clear: Accuracy of the decomposition is related to global proper-
ties of the given matrix, e.g., to the singular values. Matrices can be seen as discrete
operators, where the eigenvalues λi and the singular values σi are continuous func-
tions of the coefficients of the matrix, but the dependency is strongly non-linear.
Therefore, simple dropping rules that do not take into account global properties of
the given matrix related to the accuracy of the decomposition can only very hardly
provide robust preconditioners in all the cases.

Triangular decompositions or inversion of a triangular matrix allow us to use
the bordering scheme (depend on given algorithm) where it is easy to see that
the intermediate rows/columns are affected (in terms of rounding errors) only by
one block of the matrix. Therefore, rounding errors in such rows/columns are also
affected only by singular values that correspond to the related block of the matrix
(the interlacing theorem for singular values [39]), not to the whole matrix.

Incomplete algorithms are based on dropping rules that are, in particular, often
motivated mainly by heuristics although in some cases there exists a reasonable
theoretical understanding of the incomplete process. Based on the new theoretical
considerations (introduced previously) and also numerical behavior we introduce a
new dropping scheme that takes into account properties of finite precision arithmetic
and also a global information from the input data (matrix A).
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4.1 Motivation

Factorized approximate inverse preconditioners are based on representing the in-
verse A−1 via the incomplete decomposition Z̃Z̃T . In our case, Z̃ is in the upper
triangular form. Our system of linear algebraic equations (1.4) can be rewritten in
the symmetrically preconditioned form as

Z̃TAZ̃y = Z̃T b, x = Z̃y. (4.1)

First, let us summarize properties needed to obtain an incomplete decomposition
that could provide a good preconditioner. Practical preconditioners have to be
sparse. This is achievable for standard incomplete decompositions, but it is more
difficult for the approximate inverse decompositions since they may fill very quickly.
Further, preconditioners should be as accurate as possible. Therefore, the quality
of the approximate inverse preconditioning can be assessed by following indicators:

(i) fill-in in the matrix Z̃ (represented by the number of nonzeros denoted as

nnz(Z̃)),

(ii) the loss of the A-orthogonality among column vectors of Z̃ measured by

‖Z̃TAZ̃ − I‖.

Fill-in in the matrix Z̃ determines to the cost of the preconditioner computation
and its application. A measure of the quality of the computed preconditioner that
we will call stability is represented by ‖Z̃TAZ̃ − I‖ or ‖UZ̃ − I‖, and it is usually
in contradiction with the sparsity of the preconditioner. Therefore, simultaneous
minimization of these indicators is not an easy task for a general matrix A. The
goal is to find a balance between them.

Remark 4.1. Note that the loss of A-orthogonality ‖Z̃TAZ̃ − I‖ as well as the

norm ‖A− (Z̃Z̃T )−1‖ plays similar roles as the stability of the preconditioner ‖I −
L̃−1AL̃−T ‖ and the accuracy of the preconditioner ‖A− L̃L̃T ‖, respectively, in the
incomplete Cholesky factorization, [12].

4.2 Incomplete algorithms, error bounds and drop-
ping strategies

The incomplete algorithm relaxes the decomposition by dropping small entries
(small in some well-defined sense). The choice of a specific strategy depends on
properties of the individual algorithm possibly taking into account also the target
computer architecture. It has been shown in [2] that such strategy used in the
context of the generalized Gram–Schmidt process may produce a good and com-
petitive preconditioner. Nevertheless, the choice of the optimal drop tolerance may
be difficult. Up to now, there has not yet been proposed a better way to find it in
general cases than by trial-and-error.

In the ideal case, we may easily detect and drop those entries that do not signif-
icantly contribute to the accuracy of computed factors. The analysis in this work
motivates us to find tools useful for decision which nonzero fill-in entries do not
significantly contribute to this accuracy.

We have shown (even in the presence of rounding errors) that the considered
variants of the GGS algorithm produce the matrices Z̄ and Ū that are good ap-
proximations to Z and U , respectively. But such computation is inevitably time
consuming because it leads to rather dense factors. In Chapter 3, we have dealt
with error bounds for GGS in finite precision arithmetic. Our dropping rules should
reflect these theoretical error bounds.
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4.3 Construction of the incomplete scheme

4.3.1 Summary of theory and numerical experiments

In thesis, we have shown on test problems that numerical properties of some variants
of GGS differ accordingly to the error bounds developed in Chapter 3. From (4.1),
it is clear that a dropping technique should be based on the error bound for the loss
of A-orthogonality or similarly on the error bound for |UZ̄ − I| that also reflects
accuracy of the approximation of the inverse of U from the right. This is also related
to the error bound for the right residuals. Our error bounds are tight, but especially
for the right residuals |Ū Z̄ − I| it seems (based partially on the theory as well as
on observations) that they can be expressed in the terms of singular values of the
matrix A (or similarly in the terms of the norms of the computed matrices Z̄ and
Ū) as κ1/2(A) ≈ ‖Ū‖‖Z̄‖. Therefore, in the following text we assume that the error
in decomposition (3.4) is given by

|∆E(2)
k | ≤ O(k)u‖Ūk‖‖Z̄k‖. (4.2)

4.3.2 Adaptive dropping by a posteriori filtering

In order to present the main idea of the a posteriori filtering, we do not explicitly deal
with the pivoted algorithm because the pivoted algorithm represents a non-pivoted
algorithm that uses the already permuted matrix A′ = PTAP as presented in
subsection 2.1.1. On the other hand, we emphasize technical differences, especially
treatment of the sparsity pattern.

Although the GGS process in finite precision arithmetic provides approximations
Z̄ and Ū of the exact matrices Z and U , respectively, preconditioning of the linear
system (1.4) by Z̄ is related more to the direct method then to the preconditioning.
Our goal is to construct a dropping strategy that reflects in some sense properties
of the finite precision arithmetic. For the quantities that are influenced by dropping
we also introduce notation with an extra tilde (e.g., Z̃) in order to be consistent
with the notation used in Section 4.1. Assume that some entries in the already
orthogonalized vectors are discarded in the following way

z
(k−1)
k ◦ (1− sk) = z

(k−1)
k − z(k−1)k ◦ sk = z̃

(k−1)
k ,

where the symbol “◦” denotes the Hadamard (entry-wise) product, 1 =
∑n

i=1 ei,
and where sk ∈ {0, 1}n is a (0, 1)-vector that specifies which entries will be dis-
carded. Moreover, such vectors are normalized as follows

z̃k =
z̃
(k−1)
k

‖z̃(k−1)k ‖A
=

z
(k−1)
k ◦ (1− sk)

‖z(k−1)k ◦ (1− sk)‖A
. (4.3)

Assume that the GGS process runs in the arithmetic with the unit roundoff τk. Then
using (4.3) we can rewrite the last column of the equality (4.2) using quantities with
tilde as

Ũk[z̃k]1:k − ek = [∆E
(2)
k ]1:k,k − Ũk

[z
(k−1)
k ◦ sk]1:k

‖z(k−1)k ◦ (1− sk)‖A
, (4.4)

with
[|∆E(2)

k |]1:k,k ≤ O(k)τk‖Ũk‖‖z̃k‖, (4.5)

where the notation [ · ]1:k for the vectors has the same meaning as for matrices (here
it denotes restriction to the first k entries).

Let us assume that the magnitude of the error term that arises from dropping
(second term on the right hand side (4.4)) is at most as large as the magnitude of
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the rounding errors inherent to the GGS process (first term on the right hand side
(4.4)). Taking both error terms in the norms, using (4.5), and assuming that both
error terms are not larger than a chosen tolerance τ , 0 ≤ τ ≤ 1, we have

O(k3/2)‖Ũk‖
‖z(k−1)k ◦ sk‖∞

‖z(k−1)k ◦ (1− sk)‖A
/ O(k3/2)τk‖Ũk‖‖z̃k‖∞ ≤ τ. (4.6)

Dividing (4.6) by O(k3/2)‖Ũk‖‖z̃k‖∞ and using κ(Ũk) / O(k3/2)‖Ũk‖‖z̃k‖∞ and
(4.3), we get

‖z(k−1)k ◦ sk‖∞
‖z(k−1)k ◦ (1− sk)‖∞

/ τk ≤
τ

κ(Ũk)
. (4.7)

Let us consider sk in more detail. Our goal is to find a sparsity pattern of the
vector zk (represented by the entries equal to one in corresponding positions in the
sk vector) such that discarding all the nonzero entries outside this sparsity pattern
does not significantly increase the right residuals (errors stay of the order O(k)τ).
The largest entries (in terms of their magnitudes) have to be preserved, this leads
to the identity

‖z(k−1)k ◦ (1− sk)‖∞ = ‖z(k−1)k ‖∞. (4.8)

Therefore, (4.7) can be rewritten by using (4.8) as

‖z(k−1)k ◦ sk‖∞
‖z(k−1)k ‖∞

/ τk ≤
τ

κ(Ũk)
. (4.9)

The sparsity pattern represented by the entries equal to 1 at the corresponding
positions in sk can be obtained from the inequality (4.9). Let us set the entries
at the corresponding positions to 0 or 1 so that the inequality (4.9) holds for all

its entries of the vector z
(k−1)
k (except for the kth entry in the vector z

(k−1)
k for

non-pivoted algorithms or except for the kth entry in the vector (P̃ (k−1))T z
(k−1)
k

for pivoted algorithms). Then it is clear how the large entries (with respect to their
magnitudes) can be dropped for a given τ .

Remark 4.2. The diagonal entries of Z̃ for the non-pivoted case and the diagonal
entries of P̃T Z̃ for the pivoted case has to be involved to the sparsity pattern in
order to obtain non-singular preconditioner.

This new dropping technique based on monitoring the condition number of
Ũk will be called the a posteriori filtering. Further, the singular values inter-
lacing property κ(Ũ1) ≤ κ(Ũ2) ≤ · · · ≤ κ(Ũk) ≤ · · · ≤ κ(Ũn) [39] implies that
the sequence of drop tolerances τk is non-increasing. Typically, the relative error

‖z̃(k−1)k ◦ sk‖∞/‖z̃(k−1)k ‖∞ decreases as κ(Ũk) increases. Note that, the proposed
dropping strategy does not depend on the conditioning of the whole problem κ(U),

but only on the local condition numbers κ(Ũk) ≈ Uk. Therefore, a natural practical

strategy is to keep the increase in the sequence of the local condition numbers κ(Ũk)
as small as possible.

4.4 Numerical aspects of a posteriori filtering

Motivation of our dropping strategy is clear for the algorithms with pivoting. Never-
theless, for comparison purposes we will use this technique also for the non-pivoted
algorithms.

As we can see from (4.9), the a posteriori filtering may allow to drop relatively
large entries when the local condition numbers reflecting the first terms of the
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sequence κ(Ũ1), . . . , κ(Ũk) is small. This fact implies the need to minimize and also

monitor the local condition numbers κ(Ũk).

4.4.1 Minimizing of the local condition numbers

It is necessary to mention that the local condition numbers κ(Ũk) can not be min-
imized independently of each other (the interlacing theorem for singular values).

We know that κ(U1) = 1 and κ(Ũn) ≈ κ1/2(A). Shape of the non-increasing curve

of the local condition numbers κ(Ũk) with increasing k can be modified using a
symmetric reordering A 7→ ΠTAΠ with a permutation matrix Π. The simplest and
intuitive assumption leads to minimizing the functional

ψ =

n∑
k=1

κ(Ũk), (4.10)

and it is motivated by the greedy approach to drop as much as possible as long as
possible.

We have already described pivoting in the GGS process. Of course, the con-
sidered pivoting can be seen as a process that tries to keep the local condition
numbers κ(Ũk) small as long as possible, i.e., it approximately minimizes the func-
tional (4.10). In the other words this pivoting implies (2.4) and (2.5), therefore, the
dominant information (in some sense associated to large singular values) from A is
processed first.

Even in presence of pivoting, the curve of local condition numbers (κ(Ũk) as a
function of k) may locally (between two consecutive major steps) grow very fast if

there is a gap in the decay of the singular values of Ũ .
It is a well known fact that scaling of the matrix is one of the simplest pre-

processing technique that may improve conditioning of the matrix and it also may
force more uniform distribution of the eigenvalues. Here, we will use the scaling
introduced by Lin and Moré in [28]. Based on experimental results, we propose to
use it iteratively (similarly as in MC77 [41]) as shown in Algorithm 6.

Algorithm 6 Iterative computation of the scaling by Lin and Moré

A(0) = A = [a
(0)
1 a

(0)
2 . . . a

(0)
n ]

D(0) = In
for k = 1, 2, . . . until (|‖a(k)i ‖ − 1| ≤ θ, ∀i) or (k > kmax) do

[D]i,i = ‖a(k)i ‖1/2, i = 1, 2, . . . , n
A(k+1) = D−1A(k)D−1

D(k+1) = D(k)D
end for

Iterative scaling by Lin and Moré (or simply iterative Lin–Moré scaling) trans-
forms the original matrix A into the form

A(D) ≡ (D(k))−1A(D(k))−1,

where all the columns (and also rows) of the matrix A(D) have approximately unit
Euclidean norms.

4.4.2 Monitoring of the local condition numbers

Our method focuses on computation of the approximate inverse preconditioning
that should stay cheap. Therefore, expensive computations of the singular value
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decomposition in order to get local condition numbers κ(Ũk) in every major step
can not be the method of choice. For the pivoted algorithms we can deliver the
lower and also the realistic estimate of local condition numbers κ(Ũk).

From the properties of the eigenvalues and singular values, we have that κS(Ũk) ≤
κ(Ũk), where

κS(Ũk) ≡
max
1≤i≤k

[Ũk]i,i

min
1≤i≤k

[Ũk]i,i
≈ α̃1,1

α̃k,k
(4.11)

is the spectral condition number. Almost all diagonal entries in Ũk hold analogous
inequalities as formula (2.4) for the diagonal entries in U computed by GGS in

exact arithmetic. Therefore, κS(Ũk) is non-decreasing with k. The accuracy of the

estimate κ(Ũk) by κS(Ũk) depends on distance from normality. Note that several
ways of measuring the distance from normality can be found in paragraph 48 of
[40]. Therefore, an optimistic estimate (lower bound) of κ(Ũk) can be based on the

spectral condition number κS(Ũk).

A more realistic estimation of κ(Ũk) (also for non-pivoted algorithms) can be
based on the incremental condition estimation [6, 7, 8] or on more recent improve-
ment of this method [14].

4.5 Incomplete GGS based on the a posteriori fil-
tering

Up to now, we have dealt with the GGS process by running the “complete” algo-
rithm in exact and also in finite precision arithmetic. The dropping rule developed
in Section 4.3 in some sense obliterates the differences between the considered “in-
complete” GGS process and the GGS process in finite precision arithmetic because
the quantity τk can be seen as an adaptively variable unit roundoff.

Remark 4.3. From our point of view, the a posteriori filtering behaves similarly
as rounding in the standard IEEE 754. But it is clear that an aggressive dropping
(corresponding to the large values of τ) may provide significantly different ordering
represented by the matrix P̄ than computation without dropping.

Algorithm 5 can be then extended by the a posteriori filtering based dropping
technique.
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Chapter 5

Incomplete schemes:
numerical experiments

In this chapter we discuss results of experiments with matrices from the real-world
problems. First, we consider some small test cases and then we will also mention
some experiments with large-scale matrices. It has been already shown in [1] that
the SAINV algorithm based on the modified version of the GGS process provides
the best results among the considered A-orthogonalization schemes. In order to
present the full potential of the approximate inverse preconditioning based on the
GGS process as well as to show its other numerical aspects (pivoting, scaling) we
consider in this chapter only this algorithm. In particular, we will deal with the
incomplete version of the generalized Gram–Schmidt process that was introduced
in Chapter 4. The algorithm drops nonzero entries less (in magnitude) than an
adaptive drop tolerance τi prescribed in individual major steps i of the process.

We attempt to keep the conditioning of the principal leading submatrices Ũk as
low as possible as long as possible by combining the dropping strategy with pivoting
(Cholesky-based) that approximately minimizes functional (4.10). In addition, our
numerical experiments employ a slight extension of the scaling by Lin and Moré
[28].

As mentioned above, this chapter is composed from the two main parts. The
first of them is devoted to solving small problems. These problems are studied in
more detail from the point of view of the spectra of the preconditioned matrices
using also some other indicators describing the preconditioned iterative method.
The second part of this chapter considers larger problems in order to point out the
potential of the approach based on the considered incomplete GGS process.

5.1 Definition of the test problems

Assume the system of linear algebraic equations (1.4), where as the coefficient ma-
trix A ∈ Rn×n we chose several problems from the Tim Davis collection [13].

We assume the right hand side in the form b = Ax, where x = (1, . . . , 1)T .
These linear systems are solved using the preconditioned conjugate gradient method
(PCG) that uses preconditioner based on the incomplete generalized Gram–Schmidt
process introduced in Chapter 4.
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5.2 Stopping criterion and computational cost

Our stopping criterion for the preconditioned conjugate gradient method is based
on the normalized residual (backward error)

%(i) =
‖b−Ax(i)‖
‖A‖‖x(i)‖+ ‖b‖

, (5.1)

where x(i) is the ith approximation of the solution from the PCG. We consider
stopping criterion %(i) ≤ 10−14. Note that one could use also more sophisticated
stopping criterion based on estimation of the A-norm of the error (see, e.g., [34]) as
well as a looser stopping tolerance. The normalized A-norm of the error is defined
by

%
(i)
A =

(
〈x(i) − x∗, x(i) − x∗〉A

〈x∗, x∗〉A

)1/2

, (5.2)

where x∗ is the exact solution.
Main goal in developing of the preconditioning techniques for iterative methods

is to achieve desired accuracy of the solution with respect to other preconditioning
techniques (or in an extreme way with respect to a non-preconditioned iterative
method) more efficiently. The computational time goes often hand in hand with
the computational cost (measured by number floating point operations — flop).
Although the preconditioning may lead to a faster convergence of PCG, the compu-
tational cost of iteration with preconditioning may increase. The computational cost
of an iteration for the CG method (non-preconditioned) corresponds to O(nnz(A))

and for the PCG method to O(nnz(A) + 2 nnz(Z̃)). The ratio

Θ =
nnz(A) + 2 nnz(Z̃)

nnz(A)
, (5.3)

will be called the cost increase per iteration. In order to show the “optimal” value
of τ , we also introduce the PCG computational cost as

Φ =
(nnz(A) + 2 nnz(Z̃))iters

nnz(A)
, (5.4)

where iters denotes the iteration count to achieve desired accuracy of the solution.
The quantities (5.3) and (5.4) do not always replace the total time (time to compute
preconditioning and time to obtain solution using PCG) as an important indicator
(on sequential computers). Both quantities (5.3) and (5.4) we have introduced
here since a part of our experiments was computed in Matlab. Note that, some
illustrating figures are based on the expensive singular value decomposition.

5.3 Small test problem

Assume the system of linear algebraic equations (1.4), where the coefficient matrix is
bcsstk07 [13]. Its sparsity pattern is depicted in Figure 5.1. It has a small dimension
n = 420 and small number of nonzeros nnz(A) = 7860 that enables to show very
detailed results. Nevertheless, note that we have obtained very similar results for
the whole group of matrices arising from other problems of engineering.

For every problem several preconditioners Z̃Z̃T ≈ A−1 using the incomplete
modified GGS Algorithm are computed. We deal with variants of the modified
GGS process that employ the a posteriori filtering as introduced in subsection
4.3.2, in more detail:
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Figure 5.1: Sparsity pattern corresponding to the matrix bcsstk07.

(a) non-pivoted algorithm, original matrix,

(b) non-pivoted algorithm, matrix preprocessed by the iterative Lin–Moré scaling,

(c) pivoted algorithm, original matrix,

(d) pivoted algorithm, matrix preprocessed by the iterative Lin–Moré scaling.

In order to see the difference among these algorithms, we depict in one figure
a block of four figures as a 2 × 2 array where the plots corresponding to these
algorithms are labeled in the same way as in intemize. Such type of description is
used for the Figures 5.2, 5.3, 5.4, 5.8, 5.5, and 5.6.

Size of the test problem enables us to deliver very detailed results. We can
compute preconditioners for a large number of possible accuracies τ . We assume
τ = [0, 1] with an equidistant step equal to 0.002, it means approximately 500
preconditioners for every algorithm. Several figures focus only on a subset (that
correspond to drop tolerances τ = 0.05, 0.1, 0.2, 0.4, 0.8, 1) of the whole computation.
The scaling, that is used in this section, is based on the paper by Lin and Moré
[28] similarly as in Algorithm 6 by using 20 steps of the procedure. In practise, 20
steps is not realistic (too much) for a real-world computation, but this is not our
interest of this section. Test problems in this section were performed using Matlab
with u ≈ 1.1 · 10−16.

5.3.1 Approximate inverse: effects of pivoting and scaling

From the point of view nnz(Z̃) we can see from plots (a) and (b) in Figure 5.2
that the non-pivoted algorithm (even employing the iterative Lin–Moré scaling)
does not provide sufficiently sparse preconditioners. Although PCG converges very
fast in this case (as we can see from plots (a) and (b) in Figures 5.3 and 5.4), the
preconditioning is rather close to a direct method. The quantities Θ and Φ (plots
(a) and (b) in Figure 5.8) indicate very high computational cost. The reason for

this fact is clear as we can see from Figure 5.5. Since we often reach κ(Ũk) ≈ κ(Ũn)
in the first few major steps, then the a posteriori filtering allows to drop only very
small entries in the later steps. Therefore, the rest of the entries has to be preserved
in order to keep the chosen accuracy of the preconditioner τ .

On the other hand, we can see from plots (c) and (d) in Figure 5.2 that
algorithms employing pivoting may provide rather sparse preconditioners where
nnz(Z̃) ≈ nnz(A). The preconditioners computed with the drop tolerance τ = 0.05
and τ = 0.1 imply also fast (linear) convergence (in terms of the normalized residual
and the normalized A-norm of the error), see, plots (c) and (d) in Figures 5.3 and
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(a) non-pivoted algorithm, original matrix
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(b) non-pivoted algorithm, matrix preprocessed
by the iterative Lin–Moré scaling
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(c) pivoted algorithm, original matrix
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(d) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling

Figure 5.2: Sparsity of the preconditioner as a function of τ . The left axis describes
nnz(Z̃), the right describes the ratio of fill-in with respect to the full triangular
factor of the corresponding dimension. The bold dashed line denotes nnz(A) (in
absolute value).

5.4. The fact that the tolerances τ = 0.05 and τ = 0.1 in this case lead to good pre-
conditioners is also indicated in plots (c) and (d) in Figure 5.8. The computational
cost of PCG for these values of τ attains its minimal value (if we omit cases with
unreasonable high number of nonzeros). Significant benefits of pivoting can be also
seen by comparing plots (c), (d) in Figure 5.5 with plots (a), (b) in Figure 5.5.

Let us deal with the eigenspectra of the leading principal submatrices of the
preconditioned matrix Z̃TAZ̃. More in detail, consider the cases that have similar
PCG convergence in terms of the iteration count to achieve a desired accuracy, see
Figure 5.6.

It has been shown in thesis that pivoting such that it holds (2.4) and (2.5) for
the entries of Ū does not improve numerical properties of the computed matrices
in terms of the loss of A-orthogonality (and neither in terms of the right residuals),
but this fact seems to be no longer true for the incomplete decomposition as we can
see from Figure 5.6. There we demonstrate the fact that the modified GGS process
with the a posteriori filtering and the Cholesky-based pivoting is able to signifi-
cantly improve approximation properties of Z̃TAZ̃. It may be further improved
if we employ the iterative Lin–Moré scaling. This strategies (the Cholesky-based
pivoting and the iterative Lin–Moré scaling) shrinks the spectrum of the leading

principal matrices of the preconditioned matrix Z̃TAZ̃ in the subsequent steps of
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(a) non-pivoted algorithm, original matrix
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(b) non-pivoted algorithm, matrix preprocessed
by the iterative Lin–Moré scaling
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(c) pivoted algorithm, original matrix
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(d) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling

Figure 5.3: Convergence of PCG in terms of the normalized A-norm of the error as
a function of iteration number for several values of τ .

the decomposition much more. Employing pivoting strategies and scaling, we are
able to represent the approximate inverse with a significantly smaller number of
nonzeros. It can be also seen that the loss of A-orthogonality that is for all the
depicted cases approximately equal to 0.7. Namely, the A-orthogonality among the
column vectors in Z̃ is well preserved.

Incomplete modified GGS with Cholesky-based pivoting combined with
Lin–Moré scaling

Let us consider plot (d) in Figures 5.3 and 5.4. In both cases, the significant gap
in convergence corresponds to τ = 0.1 and τ = 0.2 (the gap can also be seen from
computational cost in the plot (d) in Figure 5.8). The eigenspectra of the leading

principal submatrices of the preconditioned matrix Z̃TAZ̃ for these two cases can be
found in Figure 5.7. Between these two plots we can see the significant differences,
the A-orthogonality for the plot (b) is completely lost (‖Z̃TAZ̃ − I‖ > 1).

From Figure 5.8 we can see that the cost increase per iteration seems to be
“continuous” and nearly monotonically decreasing function. This also indicates the
“continuity” of the sparsity patterns of Z̃. On the other hand, a significant gap can
be observed in the computational cost. Let us discuss the computational cost curve
in plot (d) in Figure 5.8 in more detail. The first part (related approximately to τ ∈
[0, 0.02]) corresponds to a very accurate computation of the approximate inverse.
The lack of sparsity of the preconditioner that corresponds to the first part of the
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(a) non-pivoted algorithm, original matrix
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(b) non-pivoted algorithm, matrix preprocessed
by the iterative Lin–Moré scaling
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(c) pivoted algorithm, original matrix
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(d) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling

Figure 5.4: Convergence of PCG in terms of the normalized residuals as a function
of iteration number for several values of τ .

curve in plot (d) in Figure 5.8, makes it hard to usable in practice. Its second part
(related approximately to τ ∈ [0.02, 0.15]) corresponds to sparse preconditioner that
leads to nearly linear convergence of PCG. Preconditioners that correspond to the
second part of this curve are the optimal ones. The third part of the curve (related
approximately to τ ∈ [0.15, 1]) corresponds to the case where the orthogonality is

completely lost (‖Z̃TAZ̃ − I‖ > 1). The preconditioning is robust also in this case,
but it does not lead qualitatively to the similar convergence as in previous part of
the curve. The fourth and also the last part of the curve (related approximately to
τ ∈ [0.95, 1]) corresponds to nearly diagonal preconditioners (Jacobi-like), however,
computation of such preconditioners using GGS is not efficient.

Let us also deal with the sparsity patterns of the matrix P̃T Z̃ (multiplying from

the left by P̃T is performed in order to have the matrix in the upper triangular
form). Figure 5.9 is formed from 6 plots (as an 3 × 2 array) corresponding to

sparsity patterns of the matrices P̃T Z̃ and computed by the incomplete modified
GGS algorithm as specified in item (d). We can see the following intuitive fact
(that also partially arises from the bordering scheme presented in Chapter 3). For
small and well conditioned (the interlacing theorem for singular values) leading

principal submatrices Ak (or [P̃TAP̃ ]k) is not necessary to use a full potential of
double precision arithmetic – major the part of the operations in finite precision
arithmetic can be truncated to zero and the diagonal preconditioner is sufficiently
good. But with a growing size of the leading principal submatrices Ak (or [P̃TAP̃ ]k)
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(a) non-pivoted algorithm, original matrix
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(b) non-pivoted algorithm, matrix preprocessed
by the iterative Lin–Moré scaling
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(c) pivoted algorithm, original matrix
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(d) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling

Figure 5.5: Local condition numbers κ(Ũk) as a function of k for several values of
τ .

it is necessary to increase the local precision τi that leads to off-diagonal fill-in in
P̃T Z̃.

Remark 5.1. The most aggressive dropping in the first few steps leads to the di-
agonal preconditioning that is equivalent to the Jacobi preconditioner. Therefore,
also τ = ∞ reduces whole incomplete GGS preconditioner to the Jacobi (diagonal)
preconditioner.
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(a) non-pivoted algorithm, original matrix, τ =
0.2, nnz(Z̃) = 60659, and iters = 20
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(b) non-pivoted algorithm, matrix preprocessed
by the iterative Lin–Moré scaling, τ = 0.1,
nnz(Z̃) = 55773, and iters = 18
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(c) pivoted algorithm, original matrix, τ = 0.05,
nnz(Z̃) = 20125, and iters = 23
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(d) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling, τ = 0.05,
nnz(Z̃) = 12393, and iters = 23

Figure 5.6: Eigenvalues of the leading principal submatrices of the matrix Z̃TAZ̃.
These plots correspond to different tolerances τ .
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(a) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling, τ = 0.1,
nnz(Z̃) = 9663, and iters = 30
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(b) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling, τ = 0.2,
nnz(Z̃) = 5624, and iters = 74

Figure 5.7: Eigenvalues of the leading principal submatrices of the matrix Z̃TAZ̃.
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(b) non-pivoted algorithm, matrix preprocessed
by the iterative Lin–Moré scaling
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(c) pivoted algorithm, original matrix
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(d) pivoted algorithm, matrix preprocessed by
the iterative Lin–Moré scaling

Figure 5.8: Cost increase per iteration (5.3) as a function of τ dashed line and the
computational cost of PCG (5.4) as a function of τ solid line.
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Figure 5.9: Sparsity patterns of the matrices PT Z̃ for several variants of τ that are
computed by the modified GGS algorithm employing pivoting, matrix preprocessed
by the iterative Lin–Moré scaling (as specified in (d)).
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5.4 Large test problems

In this section we consider larger problems described in Table 5.4. Note that,
incomplete GGS Algorithm (considered also in this section) can be implemented

efficiently in the fully sparse mode [2]. Also κ(Ũk) can be estimated efficiently. In

order to deploy a fast code, we use the optimistic estimation κ(Ũk) ≈ κS(Ũk). Note
that, in these experiments we do not use scaling. Experiments in this section are
performed using the Fortran code [35].

Table 5.1: Test matrices from Tim Davis collection [13]

Matrix Dimension [n] nnz(A) Description

bcsstk36 23 052 1 143 140 Stiffness matrix, automobile shock ab-
sorber assembly

ldoor 952 203 42 493 817 Structural 2D/3D problem
af shell8 504 855 17 579 155 Olaf Schenk, sheet metal forming
nasasrb 54 870 2 677 324 Structure from NASA Langley, shuttle

rocket booster
oilpan 73 752 2 148 558 Test matrix from Inpro

In the previous section, we have shown how the Cholesky-based pivoting and the
iterative Lin–Moré scaling may improve quality of the approximate inverse precon-
ditioning that uses dropping strategy based on the a posteriori filtering developed
in subsection 4.3.2.

Up to now, dropping techniques in the incomplete GGS process in the published
papers have been based on absolute or relative dropping similarly to incomplete
Cholesky factorization (IC(τ)). The a posteriori filtering is more related to relative
dropping called here the standard incomplete decomposition (τk = τ). Therefore, we
compare these two approaches to compute the approximate inverse preconditioning,
see, Figure 5.10.

The results (depicted in Figure 5.10) with the new approach seem to be good

from more possible points of view: iteration count, nnz(Z̃). Based on the results
for these test matrices from structural engineering, we see that this approach leads
to rather powerful and still sparse preconditioners. In some cases as depicted in
plot (e) in Figure 5.10, the new approach may deliver slightly worse results. But

note that worse results may be also due to inaccurate estimation of κ(Ũk) that is

in this case estimated in the simplest way as κ(Ũk) ≈ κS(Ũk). More sophisticated
condition estimation may further improve properties of the approximate inverse.

In general, we can see that the new approach employing the Cholesky-based
pivoting with the a posteriori filtering may enhance standard dropping rules [3].
Although in a lot of cases we can observe faster convergence for a given sparsity of
the preconditioner nnz(Z̃) with respect to standard approaches, the more significant
property of this approach seems to be that the preconditioner is nearly always much
less sensitive to the input τ . Therefore, finding the proper value τ is very often much
easier.
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Figure 5.10: Iteration count (iters) as a function of the sparsity of the precon-

ditioner nnz(Z̃) for the standard incomplete decomposition (τk = τ) and for the
decomposition employing the Cholesky-based pivoting and the a posteriori filtering
(τk = τ/κ(Ũk)).
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Chapter 6

Conclusions and open
questions

Here we summarize results presented in the thesis. We formulate some open ques-
tions and mention some possible directions for further work.

6.1 Conclusions

We give a new insight into the behavior of the generalized Gram–Schmidt based
preconditioning. In more detail, the new approach deals with dropping strategies
for a class of AINV-type incomplete decompositions [2] that are based on the gen-
eralized Gram–Schmidt process. Its behavior in finite precision arithmetic has been
discussed in [31]. This analysis enables better understanding of the incomplete pro-
cess. Based on the results in [31] and also some new error bounds developed here,
we propose a new dropping strategy to construct the incomplete decomposition.

We develop the GGS algorithm in the left-looking form that employ Cholesky-
based pivoting which does not significantly increase its computational cost.

We show that all the variants of the GGS process in finite precision arithmetic
(without iterative refinement) compute the matrix Z̄ using the numerically equiv-
alent way that corresponds to left-looking (or numerically equivalent right-looking)
scheme for computing inverse X = Z̄ of the upper triangular matrix Ū from the
equation XŪ = I. Based on the theory and also on the numerical experiments,
we demonstrate (for the complete GGS algorithm) that the indicators that corre-
spond to the stability of the preconditioner (loss of A-orthogonality ‖Z̄TAZ̄ − I‖
or ‖UZ̄ − I‖ that is also related to right residuals ‖Ū Z̄ − I‖) are hard to improve
using pivoting such that it holds (2.4) and (2.5) for the entries of Ū . Although the
component-wise error bounds of the right residuals are different for pivoted and non-
pivoted algorithms, the associated spectral norm of the bounds exhibit essentially
the same behavior.

Nevertheless, the component-wise error bounds for GGS with Z(0) = I that are
based on the bordering scheme of the upper triangular matrices bring a new insight
into the GGS process. This motivate us to introduce a new strategy (called here
the a posteriori filtering) that naturally puts adaptivity into the dropping. The a
posteriori filtering is based on the idea to discard all the entries that increase the
error in decomposition up to desired accuracy. Our implementation is such that this
discarding of the entries behaves similarly as the rounding error in finite precision
arithmetic. Therefore, the new dropping strategy can be seen as computation with a
variable machine precision that is controlled by global quantities (extremal singular

values) of the leading principal submatrices Ũk. These quantities play also (based
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partly on the theory and on the observations) a significant role for the errors in
the complete GGS process. In this way the constructed dropping strategy (the a
posteriori filtering) seems to be a link between complete algorithms in finite precision
arithmetic and incomplete algorithms.

Although the pivoting does not seem to be beneficial for improving the loss
of A-orthogonality or the decrease right residuals for the complete GGS process,
this is no longer true for the incomplete GGS process. Employing pivoting makes
the incomplete GGS process more stable and in addition it may approximate the
factor of the inverse triangular factorizations of A−1 with less number of nonzeros
by preserving the magnitude of ‖Z̃TAZ̃ − I‖. In addition, if we combine pivoting

and the iterative Lin–Moré scaling, sparsity of Z̃ may be improved even more.
The theoretical insight is accompanied by some experimental results for matrices

arising from structural mechanics. The results point out that the theoretically
motivated a posteriori filtering with the Cholesky-based pivoting and the iterative
Lin–Moré scaling leads to a rather powerful approximate inverse preconditioning.
In particular, it seems that the new dropping strategy provides preconditioners that
are sparse and powerful at the same time. Let us summarize the key features of our
preconditioning:

1. It is based on a specific combination of the modified GGS algorithm in the
left-looking form and the Cholesky-based pivoting;

2. It is theoretically motivated;

3. It works adaptively;

4. The dropping behaves similarly as rounding in finite precision arithmetic (vari-
able machine precision);

5. It is nearly always much less sensitive to input with respect to standard ap-
proaches;

6. It is more easier search for the dropping parameter (τ) with respect to stan-
dard approaches.

This thesis represents a continuation of our research published in [26].

6.2 An open questions and possible directions for
further research

Although our component-wise error bounds for the right residuals seem to be tight
(if we take the whole bound into the spectral norm), for a general matrix we are
not able to show its equivalence with O(n)uκ1/2(A). This problem is also related
to the theoretical error bound for the loss of A-orthogonality that seems to be
≈ O(n)uκ(A).

In Section 5.4 we have dealt only with the simplest estimation of κ(Ũk) based on

κS(Ũk). Open question is how significantly can be the incomplete scheme improved
using some sophisticated incremental condition estimator.

The further direction of the research may be to generalize our dropping strategy
(the a posteriori filtering) to another preconditioning, e.g., the incomplete Cholesky
factorization (IC).
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[I3] J. Kopal, M. Rozložńık, M. Tůma: Approximate inverse preconditioning
for the conjugate gradient method, High Performance Computing in Science
and Engineering (HPCSE 2013), Hotel Soláň, Czech Republic, May 27–30,
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