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Preconditioning Motivation

Algorithms
Finite precision and successful preconditioning

Motivation of preconditioning

AX =D

@ improving of spectral properties of the matrix A

@ absolute necessity for increasing robustness of iterative
solvers

@ acceleration of convergence

General strategy: multiply equation Ax = b by P, where
P~A-! sothat|l—PA| -0
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Preconditioning Motivation

Algorithms
Finite precision and successful preconditioning

Preserving symmetry

Assume A is SPD
For preserving symmetry: P = ZZT
Il —ZTAZ|| —0
Question: How to compute preconditioning Z efficiently, so that

computation cost is much less O(n®) (Gaussian elimination) for
dense case and/or parallelizable?
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Preconditioning Motivation

Algorithms
Finite precision and successful preconditioning

Algorithms for preconditioning

@ ILU - classical type of preconditioning
@ SPAI - minimization of functional ||| — PA||g, decomposition
to n-independent problems, TU Munich

@ AINV, SAINV - based on the generalized Gram-Schmidt
algorithm
o ...

Preconditioning matrix Z should be sparse, in order to have
ZTAZ sparse as well — prescribing pattern, dropping. . .
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Finite precision and successful preconditioning

Successful preconditioning

Accuracy: ||| — ZTAZ|| Stability: [|A — (Z72)7||
o Low

@ Controlled (via dropping)

NOTE: Currently no general theory of preconditioning
(stability + accuracy) — convergence
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Generalized Gram-Schmidt algorithm
The Gram-Schmidt algorithm Finite precision
Our results

Influence of initialization of the algorithm

Generalized Gram-Schmidt algorithm

@ A is a SPD matrix of dimension n x n
@ energetic dot product (x,y)a =y Ax
@ A-orthogonality (conjugate gradient method)

@ basis 29, which will be A-orthogonalized against
previously computed vectors
(for simplicity and for real-world problems Z(©) = | or
Z©) = diag(A)~1/2
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Versions

@ classical, modified,
with iterative
refinement

@ right looking,
left looking

Generalized Gram-Schmidt algorithm
The Gram-Schmidt algorithm Finite precision

Our results
Influence of initialization of the algorithm

Properties in exact arithmetic
0 ZTAZ =1
o Al=277T
o 70 =zU
@ (Z29)TAz(©) = uTu

ifi Kopal An analysis of algebraic preconditioning



Generalized Gram-Schmidt algorithm
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Finite precision

@ In finite precision arithmetic ~ ||ZTAZ — 1| <777

Question: How to estimate the loss of orthogonality || ZTAZ — ||
in case of incomplete Gram-Schmidt algorithm (with dropping)?

Idea: Bjorck,A.,Solving linear least squares problems by
Gram-Schmidt orthogonalization, BIT 7 (1967),1-21
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Generalized Gram-Schmidt algorithm
The Gram-Schmidt algorithm Finite precision

Our results

Influence of initialization of the algorithm

Preconditioning theory

Analysis:
Behavior in finite precision arithmetic (rounding errors)

Practical algorithms:
Dropping and incomplete algorithm Gram-Schmidt

Theory: Move from (full) algorithm behavior (u) to
preconditioning (incomplete algorithm - 7)
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Our results

[ZTAZ — 1| < O(u)s(A)  (CGS2, EIG)

O(u)x3/2(A)

O(u)x2(A
DOkl (CGS, AINY)

IN
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Generalized Gram-Schmidt algorithm
The Gram-Schmidt algorithm Finite precision

Our results

Influence of initialization of the algorithm

Choice of z(©

Z©) can be any n x m matrix with full column rank and m <n
(A is an n x n matrix)

Loss of orthogonality (MGS):

K(A)R(AY/2Z°)
HZTAZ _ IH < lo(u) (A)r(AL2Z,7)

k
—0(u)r(A)r(A1/2Z[)

NOTE: If Z(9) is an upper triangular matrix, then Z = L%, where
A = LLT (Cholesky factorization), otherwise Z is general matrix.
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Test problem 1

Test problem 1

Test problems Test problem 2

A = diagonal matrix, x(A)
Z(0) = H1/2 where H is the inverse Hilbert matrix, x(Z(?)) ~ 10°

~101i=0,...,15

Loss of orthogonality
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Test problem 1
Test problems Test problem 2

Test problem 2

A, 2O are the inverse Hilbert matrices (general powers)
w(A),x(Z2(®)~10"i=0,...,15
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Conclusion and open questions

Conclusion and open questions

Done
@ (full) algorithm analysis

Future work

@ find a connection between estimate of |ZTAZ — 1|| and
dropping strategy

@ analyze behavior of preconditioned iterative methods
@ analyze other related algorithms and preconditioners
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Thank you for your attention!!!

Jifi Kopal An analysis of algebraic preconditioning



	Preconditioning
	Motivation
	Algorithms
	Finite precision and successful preconditioning

	The Gram-Schmidt algorithm
	Generalized Gram-Schmidt algorithm
	Finite precision
	Our results
	Influence of initialization of the algorithm

	Test problems
	Test problem 1
	Test problem 2

	Conclusion and open questions
	

