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Motivation of preconditioning

Ax = b

improving of spectral properties of the matrix A

absolute necessity for increasing robustness of iterative
solvers

acceleration of convergence

General strategy: multiply equation Ax = b by P, where
P ≈ A−1, so that ‖I − PA‖ → 0
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Preserving symmetry

Assume A is SPD

For preserving symmetry: P = ZZT

‖I − ZT AZ‖ → 0

Question: How to compute preconditioning Z efficiently, so that
computation cost is much less O(n3) (Gaussian elimination) for
dense case and/or parallelizable?
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Algorithms for preconditioning

ILU - classical type of preconditioning

SPAI - minimization of functional ‖I − PA‖F , decomposition
to n-independent problems, TU Munich

AINV, SAINV - based on the generalized Gram-Schmidt
algorithm

. . .

Preconditioning matrix Z should be sparse, in order to have
ZTAZ sparse as well → prescribing pattern, dropping. . .
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Successful preconditioning

Accuracy: ‖I − ZTAZ‖ Stability: ‖A − (ZTZ)−1‖

Low

Controlled (via dropping)

NOTE: Currently no general theory of preconditioning
(stability + accuracy) → convergence
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Generalized Gram-Schmidt algorithm

A is a SPD matrix of dimension n × n

energetic dot product 〈x , y〉A = yT Ax

A-orthogonality (conjugate gradient method)

basis Z(0), which will be A-orthogonalized against
previously computed vectors
(for simplicity and for real-world problems Z(0) = I or
Z(0) = diag(A)−1/2
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Versions

classical, modified,
with iterative
refinement

right looking,
left looking

Properties in exact arithmetic

ZTAZ = I

A−1 = ZZT

Z(0) = ZU

(Z(0))TAZ(0) = UTU
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Finite precision

In finite precision arithmetic ‖ZTAZ − I‖ <???

Question: How to estimate the loss of orthogonality ‖ZTAZ − I‖
in case of incomplete Gram-Schmidt algorithm (with dropping)?

Idea: Björck,Å.,Solving linear least squares problems by
Gram-Schmidt orthogonalization, BIT 7 (1967),1-21
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Preconditioning theory

Analysis:
Behavior in finite precision arithmetic (rounding errors)

Practical algorithms:
Dropping and incomplete algorithm Gram-Schmidt

Theory: Move from (full) algorithm behavior (u) to
preconditioning (incomplete algorithm - τ )
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Our results

‖ZTAZ − I‖ ≤ O(u)κ(A) (CGS2, EIG)

≤ O(u)κ3/2(A)

1−O(u)κ3/2(A)
(MGS - SAINV)

≤ O(u)κ2(A)
1−O(u)κ(A) (CGS, AINV)
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Choice of Z(0)

Z(0) can be any n × m matrix with full column rank and m ≤ n
(A is an n × n matrix)

Loss of orthogonality (MGS):

‖ZT AZ − I‖ ≤
O(u)κ(A)κ(A1/2Z (0)

k )

1−O(u)κ(A)κ(A1/2Z (0)
k )

NOTE: If Z(0) is an upper triangular matrix, then Z = L−1, where
A = LLT (Cholesky factorization), otherwise Z is general matrix.
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Test problem 1

A = diagonal matrix, κ(A) ≈ 10i , i = 0, . . . , 15
Z(0) = H1/2, where H is the inverse Hilbert matrix, κ(Z(0)) ≈ 105
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Jiřı́ Kopal An analysis of algebraic preconditioning



Preconditioning
The Gram-Schmidt algorithm

Test problems
Conclusion and open questions

Test problem 1
Test problem 2

Test problem 2

A, Z(0) are the inverse Hilbert matrices (general powers)
κ(A), κ(Z (0)) ≈ 10i , i = 0, . . . , 15
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Conclusion and open questions

Done

(full) algorithm analysis

Future work

find a connection between estimate of ‖ZTAZ − I‖ and
dropping strategy

analyze behavior of preconditioned iterative methods

analyze other related algorithms and preconditioners
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Thank you for your attention!!!
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