An Analysis of algebraic preconditioning based on different variants of the Gram-Schmidt algorithm

Jiří Kopal[†] Miroslav Tůma[‡] Miroslav Rozložník[‡]

> [†]NTI FM TUL [‡]ÚI AV ČR

1. 10. 2010

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Outline

Preconditioning

- Motivation
- Algorithms
- Finite precision and successful preconditioning
- 2 The Gram-Schmidt algorithm
 - Generalized Gram-Schmidt algorithm
 - Finite precision
 - Our results
 - Influence of initialization of the algorithm
- 3 Test problems
 - Test problem 1
 - Test problem 2

Conclusion and open questions

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Algorithms Finite precision and successful preconditioning

Motivation of preconditioning

$\mathbf{A}x = b$

- improving of spectral properties of the matrix A
- absolute necessity for increasing robustness of iterative solvers
- acceleration of convergence

General strategy: multiply equation Ax = b by P, where $P \approx A^{-1}$, so that $\|I - PA\| \rightarrow 0$

< ロ > < 同 > < 回 > < 回 > .

Motivation Algorithms Finite precision and successful preconditioning

Preserving symmetry

Assume A is SPD

For preserving symmetry: $\mathbf{P} = \mathbf{Z}\mathbf{Z}^{T}$

$$\|\boldsymbol{I}-\boldsymbol{Z}^T\boldsymbol{A}\boldsymbol{Z}\|\to 0$$

Question: How to compute preconditioning **Z** efficiently, so that computation cost is much less $O(n^3)$ (Gaussian elimination) for dense case and/or parallelizable?

ヘロン 人間と 人間と 人間と

Motivation Algorithms Finite precision and successful preconditioning

Algorithms for preconditioning

- ILU classical type of preconditioning
- SPAI minimization of functional ||I PA||_F, decomposition to n-independent problems, TU Munich
- AINV, SAINV based on the generalized Gram-Schmidt algorithm
- . . .

Preconditioning matrix ${\bf Z}$ should be sparse, in order to have ${\bf Z}^{T}{\bf A}{\bf Z}$ sparse as well \rightarrow prescribing pattern, dropping. . .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Motivation Algorithms Finite precision and successful preconditioning

Successful preconditioning

Accuracy:
$$\|\mathbf{I} - \mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z}\|$$
 Stability: $\|\mathbf{A} - (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\|$

Low

Controlled (via dropping)

NOTE: Currently no general theory of preconditioning (stability + accuracy) \rightarrow convergence

< ロ > < 同 > < 回 > < 回 > .

Generalized Gram-Schmidt algorithm Finite precision Our results Influence of initialization of the algorithm

Generalized Gram-Schmidt algorithm

- A is a SPD matrix of dimension $n \times n$
- energetic dot product $\langle x, y \rangle_A = y^T \mathbf{A} x$
- A-orthogonality (conjugate gradient method)
- basis Z⁽⁰⁾, which will be A-orthogonalized against previously computed vectors (for simplicity and for real-world problems Z⁽⁰⁾ = I or Z⁽⁰⁾ = diag(A)^{-1/2}

< ロ > < 同 > < 回 > < 回 > .

Generalized Gram-Schmidt algorithm Finite precision Our results Influence of initialization of the algorithm

Versions

- classical, modified, with iterative refinement
- right looking, left looking

Properties in exact arithmetic

- $\mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z} = \mathbf{I}$
- $A^{-1} = ZZ^{T}$
- $\mathbf{Z}^{(0)} = \mathbf{Z}\mathbf{U}$
- $(\mathbf{Z}^{(0)})^{\mathsf{T}}\mathbf{A}\mathbf{Z}^{(0)} = \mathbf{U}^{\mathsf{T}}\mathbf{U}$

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Preconditioning Generalized Gram-Schmidt algorithm
The Gram-Schmidt algorithm
Test problems
Conclusion and open questions
Influence of initialization of the algorithm

Finite precision

• In finite precision arithmetic $\|\mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z} - \mathbf{I}\| <???$

Question: How to estimate the loss of orthogonality $\|\mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z} - \mathbf{I}\|$ in case of incomplete Gram-Schmidt algorithm (with dropping)?

Idea: Björck,Å.,Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT 7 (1967),1-21

< □ > < 同 > < 回 > < 回 >

Generalized Gram-Schmidt algorithm Finite precision Our results Influence of initialization of the algorithm

Preconditioning theory

Analysis: Behavior in finite precision arithmetic (rounding errors)

Practical algorithms:

Dropping and incomplete algorithm Gram-Schmidt

Theory: Move from (full) algorithm behavior (*u*) to preconditioning (incomplete algorithm - τ)

< □ > < 同 > < 回 > < 回 > < 回 >

Generalized Gram-Schmidt algorithm Finite precision Our results Influence of initialization of the algorithm

Our results

$$\begin{aligned} \|\mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z} - \mathbf{I}\| &\leq \quad \mathsf{O}(u)\kappa(A) \quad (\text{CGS2, EIG}) \\ &\leq \quad \frac{\mathsf{O}(u)\kappa^{3/2}(A)}{1 - \mathsf{O}(u)\kappa^{3/2}(A)} \quad (\text{MGS - SAINV}) \\ &\leq \quad \frac{\mathsf{O}(u)\kappa^{2}(A)}{1 - \mathsf{O}(u)\kappa(A)} \quad (\text{CGS, AINV}) \end{aligned}$$

Jiří Kopal An analysis of algebraic preconditioning

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Ξ.

 Preconditioning
 Generalized Gram-Schmidt algorithm

 The Gram-Schmidt algorithm
 Finite precision

 Test problems
 Our results

 Conclusion and open questions
 Influence of initialization of the algorithm

 $Z^{(0)}$ can be any $n \times m$ matrix with full column rank and $m \le n$ (**A** is an $n \times n$ matrix)

Loss of orthogonality (MGS):

$$\|\mathbf{Z}^{T}\mathbf{A}\mathbf{Z} - \mathbf{I}\| \leq \frac{O(u)\kappa(A)\kappa(A^{1/2}Z_{k}^{(0)})}{1 - O(u)\kappa(A)\kappa(A^{1/2}Z_{k}^{(0)})}$$

NOTE: If $Z^{(0)}$ is an upper triangular matrix, then $Z = L^{-1}$, where $A = LL^{T}$ (Cholesky factorization), otherwise Z is general matrix.

< □ > < 同 > < 回 > < 回 > < 回 >

Test problem 1 Test problem 2

Test problem 1

A = diagonal matrix, $\kappa(A) \approx 10^i$, i = 0, ..., 15 $\mathbf{Z}^{(0)} = \mathbf{H}^{1/2}$, where **H** is the inverse Hilbert matrix, $\kappa(\mathbf{Z}^{(0)}) \approx 10^5$

Test problem 1 Test problem 2

Test problem 2

A, **Z**⁽⁰⁾ are the inverse Hilbert matrices (general powers) $\kappa(A), \kappa(Z^{(0)}) \approx 10^{i}, i = 0, ..., 15$

Conclusion and open questions

Done

• (full) algorithm analysis

Future work

- find a connection between estimate of ||Z^TAZ I|| and dropping strategy
- analyze behavior of preconditioned iterative methods
- analyze other related algorithms and preconditioners

< 回 > < 回 > < 回 >

Thank you for your attention!!!

Jiří Kopal An analysis of algebraic preconditioning

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

æ