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1 Introduction
Using a pulsing bright light to achieve brightness enhance-
ment has been subject to research for many years. The first
experiments with continuously pulsing light were performed
as early as in the nineteenth century,1 and it was concluded
that light pulsing at frequency higher than critical fusion fre-
quency (CFF) appears to the observer at the same brightness
level as steady light with luminance level equal to the aver-
age level of the pulses. This is known as the Talbot–Plateau
law. However, the techniques used by that time involving
traditional light sources and a shutter did not allow for
very steep rising and falling slope of the pulses.

By the beginning of the twentieth century, it was shown
that a single light pulse (with steep rising and falling edge) at
scotopic luminance level appears brighter than is the actual
luminance of the light source, as reported in Ref. 2. This is
known as the Broca–Sulzer effect.

With the dawn of the solid-state lighting technology,
there has been an effort to revise the Talbot–Plateau law
using continuously pulsing light with very steep rising and
falling slope of the pulses.3–11 In these works, the brightness
enhancement effect is studied for monochromatic light of
various wavelength, for white light, and for pulses of various
frequency and various duty ratio.

Human retina was shown to transfer frequencies up to
roughly 160 (or even up to 200) Hz.12,13 Such an invisible
flicker may become a cause of headaches. Especially with
the rising usage of LED lighting systems where the common
method of dimming is a pulse-width modulation operated
at hundreds of hertz, pulsing light may be encountered

ever more often. Thus, correctly identifying the brightness
enhancement effect of fast pulsing light (above CFF) may
help to understand how pulsing light is perceived by the
human eye.

Results reported by the aforementioned works about
brightness enhancement effect are inconsistent, as shown
by a meta-analysis of the results provided in this paper.
The result inconsistency discussion was first opened in
Ref. 10 where comparison with Ref. 8 was given. This
paper does not focus on finding and reporting a magnitude
of the brightness enhancement gained by pulsed operation.
It focuses instead upon reviewing the methods used for
evaluating the experiment data. The motivation for doing
this is seeking an explanation of the observed discrepancies
among past results from other works.

The numerical processing approaches used in the cited
works are summarized in this paper. A key requirement is
proposed, which the authors think should be satisfied by
any unbiased evaluation method. It is found that neither
of the cited works satisfies this condition. Further in this
paper, recommendations are given about using a correct
method that would yield unambiguous results.

This paper is organized as follows: Sec. 2 summarizes
research results from referenced works. A brief description
of the two most common approaches used in the cited experi-
ments is given in Sec. 3. In Sec. 4, four distinct statistical
methods are described. The results of the methods are com-
pared upon an example data set in Sec. 5. Significance of
the results and other possible ways to process the data are
computed in Sec. 6. Correct usage of the proposed TLS
approach is given in Sec. 7, followed by the conclusions.
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2 Research Results Meta-Analysis
This section summarizes the reported results from several
published experiments. From each experiment, only tests
with 10% duty ratio pulses are picked. Some reports describe
experiments with monochromatic light; red, green, and blue
color tests were picked in these cases, see Table 1. Other
reports describe experiments with white light, see Table 2.

For the purpose of this paper, it is crucial to note the
evaluation approach chosen within each cited report.
Methods in this summary are marked as A and B, choice
I or II; in the sections that follow it is described what the
methods A and B, or choices I and II, are.

In Ref. 3, monochromatic (464, 520, and 633 nm) light
pulses at 60 Hz are tested. Brightness enhancement reported
there is summarized in Table 1 (results are given for two

observers). In order to obtain gg, the authors employed
method B, choice II, in this paper. In Ref. 4 the light of
the same wavelength was tested. Results are shown in
Table 1. The authors again used method B, choice II.

In Ref. 5, the authors analyzed white light produced by
parallel function of four monochromatic LEDs of different
wavelengths, pulsing at 60 Hz and 10% duty ratio. The
method used to obtain gg was method A, choice II. The result
(dg ¼ 3%) was found to be insignificant.

In Ref. 6, the authors tested brightness enhancement of
a white LED with the primary emission peak (blue region)
filtered out. The reported enhancement effect (gg) varies
between 1.025 and 1.14 (dg ¼ 2.5 − 14%) in dependence
on the duty ratio, the frequency being fixed at 100 Hz.
The authors employed method B, choice I, in order to obtain
the gg coefficient.

In Ref. 9, monochromatic lights of wavelengths 430, 460,
490, 520, 580, 610 and 640 nm, pulsing at 100 Hz, were
tested. Reported enhancement effect (Ref. 9, p. 7, Fig. 4)
varies between gg ¼ 1 and 1.8 (dg ¼ 0 − 80%), depending
on the duty ratio and tested wavelength. Some of the tested
wavelengths are identical (or very close) to those tested in
Refs. 3 and 4. Results for those wavelengths are shown in
Table 1. Method employed here was method A, choice I.

In Ref. 10, white light with various pulse shapes was
tested for brightness enhancement effect. For the ideal pulse
shape, the reported brightness enhancement effect was
dg ¼ 5%. The method employed here was A, choice II.

In Ref. 11, white LEDs were used for identifying the
brightness enhancement effect. Two cases (diffusers used
or not used) are described, yielding brightness enhancement
effect dg ¼ 7 or 13%. The method employed here was A,
choice I.

It is apparent that there are significant differences among
the results (dg). The rest of this paper focuses on the evalu-
ation methods used in the cited works and tries to explain the
differences by analyzing the different approaches taken.

3 Procedures for Detecting the Brightness
Enhancement Effect

The approaches used for experiments are usually based upon
finding a combination of two light levels (one continuous
and the other pulsing) that appear to a human observer as
having the same luminance. One approach is to choose
the two light levels randomly and let the observer judge
which one of them appears brighter or they have the same
brightness. Particularly in Refs. 3, 4, 8, 10, and 11, the
experiment procedure is as follows:

1. light level for steady light is chosen randomly within a
predefined interval with uniform distribution; the same
random draw is performed for the pulsing light;

2. the light levels are applied in parallel onto the meas-
urement setup within a dark room where the observer
sits; the observer sees the two lights next to each other
at the same time;

3. the observer makes his/her decision about relative
brightness of the two lights, not knowing which of
the two is steady and which is pulsing;

4. after 5 s of darkness for eye rest the procedure is
repeated;

Table 1 Monochromatic light brightness enhancement effect.

(a) Results reported by Ref. 3, used method was B-II

Wavelength (nm) 464 520 633

Reported gg 0.68 0.48 1.29

0.67 0.62 1.09

Reported dg (%) 47.06 108.33 −22.48

49.25 61.29 −8.26

(b) Results reported by Ref. 4, used method was B-II

Wavelength (nm) 464 520 633

Reported gg 0.65 0.48 0.84

0.79 0.6 0.79

Reported dg (%) 53.85 108.33 19.05

26.58 66.67 26.58

(c) Brightness enhancement reported by Ref. 9 for 10% duty ratio
(numbers read from Fig. 4 of Ref. 9), used method was A-I

Wavelength (nm) 460 520 640

Reported gg 1 1 1.15

Reported dg (%) 0 0 15

Table 2 White light brightness enhancement effect.

Report gg dg (%) Method

5 0.97 3 A-I

8 0.765 30 B-II

10 1.049 4.9 A-II

11 1.07 7 A-I

11 1.13 13 A-I
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5. for further evaluation only those trials are taken, which
were judged as having the same brightness; others are
discarded.

This approach is problematic because of point (5).
Sometimes the trials leading to “same level judgment” are
very close to trials leading to “different level judgments”
or even identical. This means that the tested subjects answer
ambiguously for a given light level combination. Care needs
to be taken when discarding the trials—also “same judgment
trials” falling into the ambiguity zone should be discarded.
With this issue taken into consideration, the described
approach is deemed proper for the purpose of the discussed
experiments.

Another possible way to perform the experiment involv-
ing the observer’s intervention was chosen in Refs. 5–7 and
9. The procedure is as follows:

1. the light level is chosen randomly both for steady and
pulsing light;

2. the light levels are applied into the setup;
3. the observer is asked to tune the brightness of one of

the lights until the effective brightness matches the
other one;

4. the procedure is repeated;
5. all the trials are taken into account for the statistical

processing.

To the authors’ knowledge, the choice of either approach
should not affect the experiment result in any way.

3.1 Experiment Data

Whichever way is chosen for the experiment, it results in
a set of data pairs E ¼ ½Esteady;Epulse�, where the quantities
Esteady and Epulse are the luminance values (objective light
levels) for continuous and pulsing light, respectively. The
ratio

EQ-TARGET;temp:intralink-;e001;63;335α ¼ Esteady

Epulse

(1)

evaluates the brightness enhancement (or loss) of the pulsing
light against the steady light. Because α is a rational quantity,
the true nature of the quantities E (be they the luminance,
illuminance, luminous flux) does not matter. The quantity

EQ-TARGET;temp:intralink-;e002;63;250β ¼ ðα − 1Þ · 100% (2)

gives the enhancement effect in per cent. Thus, for example,
α ¼ 1.3 of a given data pair means that for achieving the
same subjective brightness, 1.3 times more luminance is
necessary for the continuous light than for the pulsing light.
This further means that β ¼ 30% is positive for a positive
enhancement effect gained by using the pulsing light.

More generally these quantities can be defined for any
pair of lighting waveforms (WF, numbered 1 and 2), and so

EQ-TARGET;temp:intralink-;e003;63;135E ¼ ½E1;E2�; (3)

EQ-TARGET;temp:intralink-;e004;326;752γ ¼ E1

E2

: (4)

In this way, it is not defined which one of the waveforms
is continuous light or pulsing light, and so it can be no longer
stated that γ higher than 1 yields positive detection of
an enhancement effect. In order to reflect this ambiguity,
the δ can be defined in two ways:

EQ-TARGET;temp:intralink-;e005;326;663δ ¼
( ðγ − 1Þ · 100%; for choice I�

1
γ − 1

�
· 100% for choice II

; (5)

so the δ truly represents the enhancement effect in the desired
direction. The authors believe this is a justified approach as
neither the pulsed operation nor the steady power supply
should be favored over the other.

3.2 Evaluating the Data, Swap Indifference
Requirement

The two quantities (γ and δ) can be found for each data pair
separately, but the main goal is to find a single global value
of γg and δg for all acquired data points. So far there is no
evidence that the enhancement effect should be dependent on
the light level; therefore, this approach is deemed acceptable
for a broader range of objective light levels.

An estimate of the true value γg acquired from statistical
evaluation is denoted as gg; an estimate of δg is dg. Possible
methods for finding gg and dg are analyzed in this paper.

Because in the basic experiment, we have the steady and
pulsing light, we have two equivalent ways of choosing
waveforms 1 and 2:

• Choice I: WF1 = steady, WF2 = pulsing;
• Choice II: WF1 = pulsing, WF2 = steady;

the main requirement laid upon the method is that it should
yield mutually reciprocal results in respect to the choice of
WF1 and WF2. This means that

EQ-TARGET;temp:intralink-;e006;326;326gg∶I ¼
1

gg∶II
; (6)

where indices I and II each denote one of the options of
choice of WF1 and WF2. In other words, the reported
enhancement effect

EQ-TARGET;temp:intralink-;e007;326;249dg∶I ¼ dg∶II (7)

should be the same if the quantities per WF1 and WF2 are
swapped in the calculation and afterward the result is recip-
rocated. Failure to this condition means that from one set of
data points it is possible to get two distinct values of gg and dg
and then it is up to the researcher whichever result they choose
for publication. This may yield a bias in the published results.

Further in the paper, it will be shown that the methods
used so far in the conducted research do not satisfy this con-
dition. The choices in the following text will always be num-
bered the same way as in this section (Roman numbers).

3.3 Scatter Diagrams

Placing the resulting data pairs upon a two-dimensional
plane results in a scatter plot. This way the value γi represents
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the slope of a line drawn from the origin toward one of the
data points (i’th data point), and γg represents the slope of
a single line drawn from the origin toward the cluster of
all the data points.

Figure 1 shows an example of such scatter diagram; in this
paper the example dataset will be used for numerical dem-
onstrations. The example data set comes from Ref. 11 and
was chosen for easy demonstration of the analyzed methods.
The example data set contains N ¼ 45 observations. The data
set was acquired using the procedure where the observer does
not have the possibility to manipulate the brightness and only
judges the relative brightness of pulsed and steady light.

4 Examined Methods
In this section, we describe several methods available for
statistical evaluation of the experiment data. All these meth-
ods allow for calculating the general coefficient estimate gg
from the original data set.

The assumptions necessary for solving the problem in
Sec. 3.2 are that the points are scattered along a line with
zero intercept; thus the measurements can be hypothetically
split into additive zero mean noise and unnoised values

EQ-TARGET;temp:intralink-;e008;63;249E1 ¼ E1;0 þ ϵ; E2 ¼ E2;0 þ ϵ 0; (8)

EQ-TARGET;temp:intralink-;e009;63;218E½ϵ� ¼ 0; E½ϵ 0� ¼ 0; (9)

the index 0 indicates unnoised values. Equation (9) means
that the expected value of the noise is zero. There are no
assumptions about the distribution or variance of the noise.
The origin of the noise is either acquisition or uncertainty of
the human observer.

For the unnoised values, there is linear relationship

EQ-TARGET;temp:intralink-;e010;63;126E1;0 ¼ γgE2;0; (10)

where γg is the true physical value that is to be estimated.
From Eq. (10) one can arrive to

EQ-TARGET;temp:intralink-;e011;326;752γg ¼
μ1
μ2

; (11)

where μ1 and μ2 are mean values of E1;0 and E2;0,
respectively.

4.1 Method A: Slope Mean Value

The first of the examined methods is in principal finding
the mean value of the ratios Eq. (4)

EQ-TARGET;temp:intralink-;e012;326;650ggA ¼ 1

N

X
i

γi ¼
1

N

X
i

E1;i

E2;i
: (12)

Histogram of the ratios for the example data set is in
Fig. 2. Swapping the variables and finding a reciprocal
value in Eq. (12) yields

EQ-TARGET;temp:intralink-;e013;326;570

NP
i
E2;i

E1;i

; (13)

which is not equal to Eq. (12) and the swap indifference
requirement is not fulfilled.

The expected value of this estimate can be found (using
second-order Taylor expansion) as

EQ-TARGET;temp:intralink-;e014;326;478E½ggA� ¼ E

�
E1

E2

�
≈
E½E1�
E½E2�

−
1

E½E2�2
Cov½E1; E2�

þ E½E1�
E½E2�3

Var½E2�; (14)

which can be simplified into

EQ-TARGET;temp:intralink-;e015;326;392E½ggA� ¼
μ1
μ2

−
1

μ22
Cov½E1; E2� þ

μ1
μ32

σ22: (15)

The last two terms represent an error of the estimate.
Because they will always be nonzero, they also represent
a bias and thus prove the estimate is not consistent.

This method is used in Refs. 5 and 9–11.
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Fig. 2 Example data set: a histogram of the calculated γi per each
data point.
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Fig. 1 A scatter plot of the example data used in this paper.
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4.2 Method B: Ordinary Least Squares Method

The ordinary least squares method (OLS) is a linear regres-
sion method for finding a fit between a predicted variable and
explanatory variables. In this case, the fit will be a line with
zero intercept

EQ-TARGET;temp:intralink-;e016;63;693E2;0 þ ϵ 0 ¼ γgBE1;0: (16)

The OLS minimizes the sum of squared error ϵi of all
data points Ei ¼ ½E1;i;E2;i�. The estimate ggB is computed
analytically by

EQ-TARGET;temp:intralink-;e017;63;629ggB ¼
P

iðE1;iE2;iÞP
i
E2
1;i

: (17)

Swapping the variables and finding a reciprocal value in
Eq. (17) yield

EQ-TARGET;temp:intralink-;e018;63;554

P
iE

2
2;iP

iðE1;iE2;iÞ
; (18)

which is not equal to Eq. (17) and the swap indifference
requirement is not fulfilled.

This is because the error is assumed to be within the
variable E2, whereas the quantity E1 is assumed error-free,
as can be seen in Eq. (16). This is not consistent with
the assumptions stated at the beginning of this section.
Ignoring noise in either variable may introduce bias. Under
the assumptions stated above, it can be shown [(Ref. 14,
chapter 8, Eqs. (8.8) and (8.9)] that the OLS estimate is
biased and does not converge to γg (the estimate is inconsis-
tent). This method is used in Refs. 3, 4, 6, and 8.

4.3 Method C: Total Least Squares Method

The major difference between the OLS and the total least
squares (TLS) method is that the error is assumed both
within variables E1 and E2.

14 This way both variables are
treated equally. It is not the scope of this paper to give
much detail about this method. The model used in this
case is

EQ-TARGET;temp:intralink-;e019;63;294E1 ¼

2
6664
E1;1

E1;2

..

.

E1;N

3
7775;E2 ¼

2
6664
E2;1

E2;2

..

.

E2;N

3
7775; (19)

EQ-TARGET;temp:intralink-;e020;63;220½E2 E1� ¼ ½ggCE1;0 E1;0� þ ½ϵ 0ϵ�; (20)

EQ-TARGET;temp:intralink-;e021;63;195Cov½½ϵ 0ϵ�� ¼ σ2
�
1 0

0 1

�
: (21)

The original observation matrix is split in an unnoised
matrix of rank 1 and a rank 2 matrix containing two noise
vectors, uncorrelated and of the same magnitude. The first
term of the RHS of Eq. (20) minimizes the norm of the differ-
ence between the original data set and its approximation. In
practice, the TLS problem can be solved using the singular
value decomposition. The coefficient estimate ggC is then
found as a ratio of the norms of the two colinear vectors

EQ-TARGET;temp:intralink-;e022;326;501ggC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iE
2
1;0;i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iE
2
2;0;i

q : (22)

During the process, the variables are interchangeable;
therefore, swapping the variables and finding a reciprocal
value in Eq. (22) yields the same formula and the swap indif-
ference requirement is fulfilled. It can be shown (Ref. 14,
chapter 8) that under the assumptions stated above this
method converges to the true value γg with no bias (the esti-
mate is consistent).

A graphical example of OLS and TLS fits is given in
Fig. 3. The figure gives an example of three points on a
plane, each approach resulting in a different fit; dashed
lines are the residuals. The blue line is an OLS fit under
assumption of noised Y and noiseless X; red line is an
OLS fit under assumption of noised X and noiseless Y;
green line is the TLS fit, assuming noised both X and Y.
The figure shows which noise component is minimized
by three different approaches. For the TLS, the residuals
are taken perpendicular to the fit, which better describes
the way the data are acquired. The TLS method has not
been used in any of the hereby cited reports.

4.4 Method D: Slope of the Centroid

This approach finds the centroid of the analyzed data set
Ec ¼ ½1N

P
iE1;i;

1
N

P
iE2;i� and determines the slope of the

centroid

EQ-TARGET;temp:intralink-;e023;326;178ggD ¼
P

iE1;iP
i
E2;i

: (23)

After swapping the variables and finding a reciprocal
value, we receive the identical formula. Therefore, the
swap indifference requirement is fulfilled. This is possible
because the noise is canceled via summation prior to finding
the reciprocal value of one of the variables.
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2

3

4

X axis

Y
 a

xi
s

res:x

res:y

res:TLS

Fig. 3 Demonstration of the approaches of OLS (red, blue) and TLS
(green line).
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Kukačka et al.: On correct evaluation techniques of brightness enhancement effect measurement data



The expected value of the estimate can be expressed
similarly to Sec. 4.1 as

EQ-TARGET;temp:intralink-;e024;63;730E½ggD� ¼ E

�
E½E1�
E½E2�

�
¼ E

�
A
B

�

≈
E½A�
E½B� −

1

E½B�2 Cov½A; B� þ
E½A�
E½B�3 Var½B�; (24)

substituting

EQ-TARGET;temp:intralink-;e025;63;645A ¼ E½E1�; B ¼ E½E2�: (25)

Because

EQ-TARGET;temp:intralink-;e026;63;608E½A� ¼ E½E½E1�� ¼ E½μ1� ¼ μ1; E½B� ¼ μ2; (26)

EQ-TARGET;temp:intralink-;e027;63;578Var½A� ¼ Var½E½E1�� ¼
σ21
N

; Var½B� ¼ σ22
N

; (27)

EQ-TARGET;temp:intralink-;e028;63;541Cov½A; B� ¼ 1

N
Cov½E1; E2�; (28)

we will finally receive

EQ-TARGET;temp:intralink-;e029;326;752E½ggD� ¼
μ1
μ2

−
1

μ22

Cov½E1; E2�
N

þ μ1
μ32

σ22
N

: (29)

The last two terms represent an error, which will decrease
with increasing N. This indicates that method D converges
to μ1∕μ2 and the estimate is asymptotically unbiased (i.e.,
consistent).

5 Methods Comparison
For numerical comparison of the above-mentioned methods,
an example data set was used (see Fig. 4) and the calculations
for each of the methods were carried out. Each method was
used twice; once with choice I and once with choice II.

Table 3 contains summarized results. Each row contains
results for a given method and a particular choice of the WF1
and WF2. For the option I, the choice was: WF1 steady light,
WF2 pulsing light (choice I). For the option II, the choice
was swapped (choice II) and the brightness enhancement
dg was calculated using a reciprocal value of gg. In the last
column are the values of dg, which is the enhancement effect
magnitude reported by that particular approach.

It can be seen that for the methods A and B it is possible to
obtain two distinct values of the same significance. One of
them is overestimating the result while the other is underes-
timating. For the choice I, the table shows that method A
overestimates the result while the method B underestimates.
For the choice II it is the opposite.

The methods C (the TLS) and D (slope of the centroid)
yields identical results for both approaches. This means these
methods satisfy the requirement of swap indifference.
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Fig. 4 A scatter plot of the example data used in this paper with lines
fitted using several methods; lower subfigure is a detailed view where
it is seen that the fits gained by methods C-I and C-II (resp. D-I and
D-II) perfectly overlap.

Table 3 Results of the comparison upon example data; bold values
indicate those from which the dg was calculated.

Method WF choice gg 1∕gg dg (%)

(A) Mean value A-I WF1 steady 1.127 0.888 12.7
WF2 pulsing

A-II WF1 pulsing 0.933 1.072 7.2
WF2 steady

(B) OLS B-I WF1 steady 1.070 0.935 7.0
WF2 pulsing

B-II WF1 pulsing 0.897 1.115 11.5
WF2 steady

(C) TLS C-I WF1 steady 1.094 0.914 9.4
WF2 pulsing

C-II WF1 pulsing 0.914 1.094 9.4
WF2 steady

(D) Center slope D-I WF1 steady 1.089 0.919 8.9
WF2 pulsing

D-II WF1 pulsing 0.919 1.089 8.9
WF2 steady
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6 Statistical Significance of the Results,
Confidence Intervals

This chapter looks into details of checking the significance of
the acquired coefficient gg. In all following numerical exam-
ples and figures, the choice of waveforms will always be
WF1 steady and WF2 pulsing (choice I) except for Table 4
where the results are summarized for both choices.

6.1 Method A: Slope Mean Value

In Ref. 5, the authors calculated the standard deviation of
the γi

EQ-TARGET;temp:intralink-;e030;63;317sγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ðγi − ggAÞ2
s

(30)

per each tested subject. An aggregated value for all tested
subjects was then used to get a confidence interval
CI ¼ ðggA � sγÞ. The check of the statistical significance
lies in checking if the CI contains 1.

There are several problems with this approach. First, the
authors do not mention the significance level of this CI and
thus the power of the check. Second, the standard deviation
in Eq. (30) is for particular observations γi. When analyzing
the mean value ggA, the standard deviation is correctly iden-
tified as sγ∕

ffiffiffiffi
N

p
. Consequentially without such adjustment,

this approach is very strict and tends to reject smaller values
of the brightness enhancement effect.

The right way to express the CI with significance level a
for mean estimate of a population with unknown standard
deviation should be calculated using Student’s t distribution
with N − 1 degrees of freedom:

EQ-TARGET;temp:intralink-;e031;326;752CI ¼
�
ggA � tN−1

�
a
2

�
sγffiffiffiffi
N

p
�
: (31)

For our example dataset, the correctly calculated two-
sided 95% CI for ggA according to Eq. (31) is CI ¼
ð1.048; 1.206Þ. A p-value of the test can be calculated either
one-sided or two-sided. The p-value is the significance level
of the test. It indicates the probability of having false-positive
detection. The lower p-value, the more significant the result
is. The upper limit p ¼ 0.05 is a commonly recognized limit
for statistical checks. For our case, more proper is one-sided
p-value. It can be calculated as

EQ-TARGET;temp:intralink-;e032;326;618p ¼ 1 − t−1N−1ðTÞ; (32)

where T is a test statistic

EQ-TARGET;temp:intralink-;e033;326;575T ¼ ggA − 1
sγffiffiffi
N

p
: (33)

For our example data set, the p-value was
p ¼ 1.2 × 10−3.

6.2 Method B: Ordinary Least Squares

Finding a fit using the OLS makes no assumptions about the
input data. Testing the results for significance assumes the
residuals follow normal distribution with zero mean and
that the variance of the E2 is constant (the assumption of
homoskedasticity). Figure 5 shows that the residuals distri-
bution can be assumed normal. The normality can be
checked using several methods; in this paper, we used the
Chi-square goodness-of-fit. For our sample, the hypothesis
of normality was accepted.

Heteroskedasticity is often encountered though, just as it
is in our example data. Several ways of performing a signifi-
cance test for heteroskedastic data are described in Ref. 15.

In general, a statistical test for null hypothesis ggB ¼ 1
(i.e., no enhancement effect) looks like this: the test statistic

EQ-TARGET;temp:intralink-;e034;326;324T ¼ ggB − 1ffiffiffiffiffiffiffiffiffiffiffi
s2v11

p ; (34)

−1 −0.5 0 0.5 1
0

2

4

6

8

10

12

OLS and TLS residuals

no
. o

f 
sa

m
pl

es

Fig. 5 Histogram of the OLS (light) and TLS (dark) residuals.

Table 4 Summary of the 95% CI (two-sided) and p-values (one-
sided) obtained from all methods (methods C and D need not to
distinguish between choice I and II); the approach B-I+bootstrap
would accept the null hypothesis as the CI covers 0.

Method Estimate dg (%) 95% CI (%) p-value

A-I 12.7 �7.9 1.2 × 10−3

A-I + bootstrap 12.7 �7.5 1.2 × 10−3

A-II 7.2 �7.2 4.3 × 10−2

A-II + bootstrap 7.4 �7.0 2 × 10−2

B-I 7.0 �2.8 3.8 × 10−6

B-I + bootstrap 7.1 �7.8 3.8 × 10−2

B-II 11.5 �2.6 3.2 × 10−13

B-II + bootstrap 11.4 �7.9 2.2 × 10−2

C 9.4 �7.2 1.2 × 10−2

C + bootstrap 9.4 �8.0 1 × 10−2

D 8.9 �6.9 5.6 × 10−3

D + bootstrap 9.0 �6.9 5.6 × 10−3
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where s2 is the estimate of the parameter variance and v11 is a
diagonal element of the covariance matrix [in case of using
the model (16) the covariance is a scalar], is consistent with
the Student’s t-distribution of N − 1 degrees of freedom
(N is the sample size) when null hypothesis is valid. The
covariance matrix can either be calculated for homoskedastic
data or estimated for heteroskedastic data (refer to Ref. 15).
For our example data set, the test statistic is T ¼ 5.0746.

The one-sided p-value of the test can be calculated iden-
tically to Eq. (32). In our example data, the p-value of the
t-test is p ¼ 3.8 × 10−6.

A two-sided 95% confidence interval (indicating the
result is within given boundaries with 95% probability)
for the OLS result ggB can be calculated

EQ-TARGET;temp:intralink-;e035;63;598CI ¼ ½ggB � tN−1ð0.975Þ
ffiffiffiffiffiffiffiffiffiffiffi
s2v11

q
�: (35)

For our example data, the confidence interval is
CI ¼ ð1.042; 1.097Þ.

6.3 Method C: Total Least Squares

Histogram of the TLS residuals for our example data is in
Fig. 5. The Chi-square goodness-of-fit test performed
upon the residuals confirmed that the residuals come from
normal distribution with zero mean.

One of possible ways of estimating the covariance matrix
with heteroskedastic data for the TLS is described in Ref. 16.
A test statistic, p-value and confidence interval can be
constructed in the same way as in the previous paragraph.
For our example data, the test statistic is T ¼ 2.6339,
p-value is p ¼ 0.012 and 95% confidence interval is
CI ¼ ð1.022; 1.166Þ.

6.4 Method D: Slope of the Centroid

The variance of the estimate ggD can be expressed as

EQ-TARGET;temp:intralink-;e036;63;351Var½ggD� ¼ Var

�
EðE1Þ
EðE2Þ

�
¼ Var

�
A
B

�

≈
Var½A�
E½B�2 − 2

E½A�
E½B�3 Cov½A; B� þ

E½A�2
E½B�4 Var½B�;

(36)

using similar approach as in Sec. 4. This will simplify to

EQ-TARGET;temp:intralink-;e037;63;252Var½ggD� ¼
σ21
Nμ22

− 2
μ1
μ32

1

N
Cov½E1; E2� þ

μ21σ
2
2

Nμ42
: (37)

Calculation involves estimating σ1 and σ2 by sample stan-
dard deviations s1 and s2, and μ1 and μ2 by sample mean of
E1 and E2, respectively. Calculations performed for the
example data set reveal that Var½ggD� ¼ 1.2473 × 10−3.
A 95% CI can be constructed as

EQ-TARGET;temp:intralink-;e038;63;151CI ¼ ðggD � z0.975
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ggD�

q
Þ; (38)

where z0.975 is the normal distribution quantile. Calculations
show that CI ¼ ð1.0195; 1.1575Þ.

6.5 Bootstrapping

The bootstrap is yet another technique for inferring the accu-
racy of the fitted results.17 It is very versatile and can be used
even when there is no other way of determining the accuracy
of a computational result and no knowledge about the noise
distribution in the data. The basic idea is to perform a “rep-
etition” of the original experiment yielding similar noise dis-
tribution. To this end, another set is created from the original
data set, using simple random sampling with replacement.
From this new data set, a new gg estimate is calculated.

This process is repeated B times, producing a set of B new
estimates b1; b2: : : bB. From these we can get the approxima-
tion of the distribution of the estimates. The mean value

EQ-TARGET;temp:intralink-;e039;326;605b̄ ¼ 1

B

XB
i¼1

bi (39)

can be seen as a new estimate of γg.
The bootstrapping technique also allows for calculating

the confidence interval. Figure 6 shows a histogram of the
bootstrapped estimates of γg according to methods A, B,
C, and D; the distribution is usually very close to normal.
A confidence interval from the bootstrapped results can
be constructed (see Ref. 18)

EQ-TARGET;temp:intralink-;e040;326;479CI ¼ ½b̄� Fð0.975ÞsðbÞ�; (40)

where sðbÞ is the standard deviation of the estimates bi

EQ-TARGET;temp:intralink-;e041;326;436sðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B − 1

XB
i¼1

ðbi − b̄Þ2
vuut ; (41)

and F is either the empirical cumulative distribution function
(CDF) of bi, normal CDF or for N smaller than 30 the CDF
of Student’s t distribution with N degrees of freedom.

Bootstrapped results and their CIs per each method are
summarized together with intrinsic CIs in Table 4. For the
method B, the intrinsic CI and bootstrapped CI are very
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Fig. 6 Distribution of the estimates bi according to four methods,
choice I and II, B = 10,000. The bootstrap method assumes the
(unknown) distribution of estimates gg can be approximated by the
distribution of estimates bi . All results calculated from identical boot-
strap draws; for methods C and D the choices I and II overlap.
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different; this indicates that there might be a problem with
noise treatment in the method B. Without the bootstrap,
the significance of the result is grossly overestimated. For
the method D, the intrinsic uncertainty equals the boot-
strapped uncertainty almost exactly.

6.6 Removing Outliers

Outlier is a term used in statistics for a data point which for
some reason does not correspond with the rest of the proc-
essed data. The outliers distort the result significantly even
though their relative significance to other observations is low.
Therefore, every evaluated data set should be cleared of
outliers prior to processing.

For the TLS, it is possible to detect the outliers analyzing
the noise En;i ¼ ½ϵi; ϵ 0i �. The square of the normalized noise
should follow Chi-square distribution withN degrees of free-
dom. Those observations where either ϵ or ϵ 0 is too large
(with more than 95% probability that they do not come from
the Chi-square distribution) can be deemed as outliers and
should be removed from the data set. In our example data
set, this approach did not reveal any outliers.

7 Correct Usage of the TLS Method
In this section, the authors would like to give recommenda-
tions about correct usage of the method C (TLS) for evalu-
ating the brightness enhancement effect experimental data.

First, the TLS should be calculated using all data points
and using the preliminary results, any detected outliers (see
Sec. 6.6) should be removed. The calculation should be
repeated on the outliers-free data set until all remaining resid-
uals are compatible with the global standard deviation.

Second, a t-test should be performed confirming that the
resulting coefficient gg is significantly different from 1. The
test (Sec. 6.3) should be performed while assuming hetero-
skedasticity in the data,16 if it is the case. A p-value of the
t-test should be calculated; p-value smaller than 0.05 is com-
monly recognized as a statistically significant result. The
p-value 0.05 indicates 5% chance of false-positive detection.

Third, a CI for gg can be constructed using Eq. (35).
Usually, 95% CIs are used. Alternatively, the confidence
interval can be estimated using the bootstrap (Sec. 6.5).

In dependence on the choice of WF1 and WF2 (choice I
or II), the final enhancement effect dg should be calculated
using one of the two options in Eq. (5) from the resulting gg.
The endpoints of the CI—if reciprocation is necessary—
should be recalculated using this approach

EQ-TARGET;temp:intralink-;e042;63;241CInew ¼ 2

gg
−

1

g2g
CIorig; (42)

which is a linearized transform.
The conclusion for our example data set would be that

there is an enhancement effect detected of the magnitude
dg ¼ 9.3� 7.2% (Table 4).

8 Conclusions
The paper evaluated the bias, standard deviation, confidence
interval, and p-value of the methods used to quantify the
brightness enhancement effect of pulsing light. To the best
of the authors’ knowledge, those aspects were not fully con-
sidered in the reported studies.

The authors have formulated a condition of swap indiffer-
ence, which should necessarily be satisfied by the employed
method. It is shown that the previously used methods do not
satisfy this condition and thus may yield a bias in the
reported results. The authors come up with the idea of
employing the TLS method for data evaluation. It is estab-
lished that this method (noted here as method C) satisfies
said condition of swap indifference as it treats both variables
from the experiment data the same way and thus yields
unbiased results. The authors also come up with another
very simple method (method D), which is swap-indifferent
and yields consistent estimates. The authors would like to
discourage other researchers from using other methods.

The formulated statements are verified upon an example
data set and a numerical example is given for each method.
Summary is shown in Table 3.

It is concluded that the method D can be used for data
evaluation but performs better for larger sample sets because
the noise is canceled out only via summation. On the other
hand, the method C can be used even for smaller data sets as
it is designed to minimize the residuals directly.

Because the methods A and B (Sec. 4) yield biased
(systematically over- or underestimated) results, their usage
is strongly discouraged, although the method B yields
more significant results (lower p-value) than method C.
It is shown that this results from noise underestimation in
method B.

The noise level in the example data set is very high.
Figure 6 shows that all eight ways to estimate the gg are
consistent with each other (the distributions overlap) and,
numerically, it is impossible to make significant difference
among the results. Even so, the swap indifference require-
ment should still be fulfilled by the employed method in
order to reduce noise sensitivity.

Considering the findings, it can be said that at least some
of the discrepancies shown in Sec. 2 can be explained by
improper noise treatment. All the results shown in Table 1
may all suffer from overestimation, and so it is advisable
to look for other source of discrepancy.

However, Table 2 shows that the discrepancies may
be explained by improper evaluation approaches. Over-
estimated results may be Refs. 8 and 11 (Table 2, row two,
four and five), whereas in Refs. 5 and 10 (Table 2, row one
and three) the results may be underestimated.
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