

flusser@utia.cas.cz

www.utia.cas.cz/people/flusser

Prof. Ing. Jan Flusser, DrSc.

Dekonvoluce obrazu Metody a využití

Convolution in image processing

Image formation model

original *u*(*x*)

acquired blurred image z(x)

$$z(x) = (h * u)(x) + n(x)$$

h(x,y) is a PSF of the camera

Typical blur sources

Camera shake/motion Object motion Wrong focus Diffraction Atmospheric turbulence

An inverse problem

How to get from the acquired image

back to (or close to) the original?

Intuitive solution to the inverse problem

• No noise, PSF known – Fourier transform

$$G = F \cdot H$$

Intuitive solution to the inverse problem

... does not work on real images

Blind deconvolution

$$z(x) = (h * u)(x) + n(x)$$

- an ill-posed problem

Multichannel deconvolution

Assumptions:

- Several input images of the same scene are available
- They are blurred by convolution with different convolution kernels
- The original scene does not change during the acquisitions

Multichannel acquisition model

Multichannel Blind Deconvolution

- System of integral equations (ill-posed, underdetermined) $z_k(x) = (h_k * u)(x) + n_k(x)$
- Energy minimization problem (well-posed)

$$E(u, \{h_i\}) = \frac{1}{2} \sum_{i=1}^{K} \|h_i * u - z_i\|^2 + \lambda Q(u) + \gamma R(\{h_i\})$$

Regularization terms

$$E(u, \{h_i\}) = \frac{1}{2} \sum_{i=1}^{K} \|h_i * u - z_i\|^2 + \lambda Q(u) + \gamma R(\{h_i\})$$

$$Q(u) = \int_{\Omega} \phi(|\nabla u|)$$

$$R(\{h_i\}) = \frac{1}{2} \sum_{1 \le i,j \le K} \|z_i * h_j - z_j * h_i\|^2$$

Alternating Minimization (AM) of E

AM of $E(u, \{h_i\})$ over u and h_i

Input: Blurred images and estimation of the PSF size

Output: Reconstructed image and the PSF's

Misregistration of the channels

... leads to artefacts if not handled properly

Handling a between-image shift

Long-time exposure I

Space-variant PSF

$$\mathbf{z}(x,y) = \int_{\Omega} \mathbf{u}(x-s,y-t)\mathbf{h}(s,t;x-s,y-t) \, ds dt + \mathbf{n}(x,y)$$

Deconvolution and superresolution

$$E(u, \{g_i\}) = \frac{1}{2} \sum_{i=1}^{K} \|D(g_i * u) - z_i\|^2 + \lambda Q(u) + \gamma R(\{g_i\})$$

Superresolution

SR image (2x)

optical zoom (ground truth)

Superresolution of a video

Superresolution of Video

The challenge: Embedded applications

Requirements:

 On-chip implementation, no off-line computer processing

• Real-time (almost) performance

Cell-phone images

Primary degradation is a camera-shake blur, secondary degradation is wrong focus

PSF estimation in smartphones

Using accelerometers and/or gyroscopes

Rotation and translation

of the phone

Infrared video super-resolution

Handheld IR camera 160 x 120, 9 fps

Real-time super-resolution with factor 2 (320 x 240) computed directly inside the camera on a DSP

It's time for questions ...