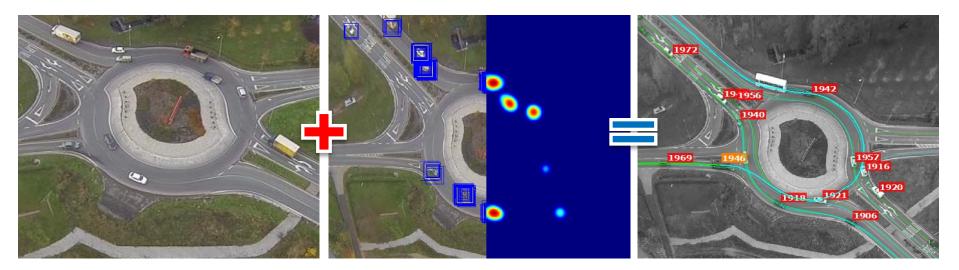

a new point of view

affic is a problem everywhere

With more than 1 billion vehicles and more than 7 billion people all over the world, traffic jams are key issues.

The total number of road traffic deaths⁽¹⁾ remains unacceptably high at 1.24 million every year.


The traffic jam costs can be split into:

- Road accident costs (direct and indirect)
- Environment costs (air, acoustic)
- Business costs (travel time, queues)
- Parking search costs

All drivers are involved.

Problem: Advanced Traffic Data Solution: DataFromSky service

Our solution

Aerial video DataFromSky service

Unlimited traffic data

DataFromSky is an advanced tool designed for monitoring and analyzing traffic flow in road networks by processing video data.

Classic traffic data

- Traffic counts
- Vehicles classification
- Gate counts
- O/D matrix

Dynamical data

- Speeds
- Lateral acceleration
- Tangential acceleration

Trajectories

- Vector format
- Clustering

Traffic simulation parameters

- Travel time
- Travel distance
- Speed profile
- Critical headway
- Follow-up headway

Safety parameters

- Time to collision
- Detection of anomalies

Object Counting

no matter what, DFS will keep you updated with the numbers

Vehicles: 435, Traffic flow: 125 vehicles per hour, Occupancy: 93.5 %

Animal Tracking

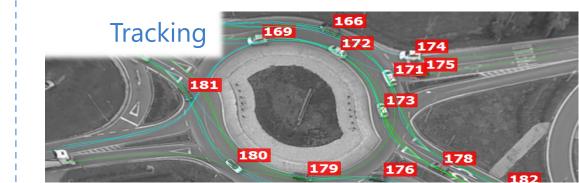
count your lost sheep

Behind the scenes

50 Software architecture & algorithms

Basic tasks

Positive



Preprocessing

Detection

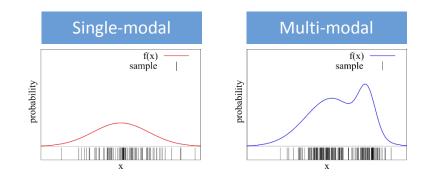
Multi-Object Tracking

Aim: Generate complete continuous trajectories of all vehicles from given video sequence and vehicle presence clues generated in detection phase.

- Pitfalls:
 - "Tiny" targets even down to cca 10x10 px
 - Blur due to motion and defocus
 - Low feature salinity
 - Multiple similar objects
 - Variable appearance of the same object
 - Occlusion and overlaps

Blur and low feature salinity

Occlusion



Multi-Object Tracking Particle Filter

= Bayesian **Bootstrap** Filter

- able to capture multimodal probability distribution
- samples state space by particles, which represent solution candidates.
- Target Representation
 - Circular template
 - RGB + Edge colour space
- Particle
 - **x**, **v**, *s* = position, velocity and size
 - dynamic model: $\mathbf{x} = \int \mathbf{v} \, \mathrm{d}t + \mathbf{x}_{init}$

Multi-Object Tracking Particles

- Evaluation:
 - $W(p,t) = e^{App(p,t)^2 Att(p)}$
 - Appearance similarity:
 - $App(t) = \frac{1}{1 + \text{SAD}_{C}(T_{t}, T_{p})}$ - Attraction factor: $Att(p) = heat (D_{weak}, p)$
- Resampling: roulette wheel according to W(p,t)

- Transition: dynamics + noise
- Estimated state = best evaluated particle.

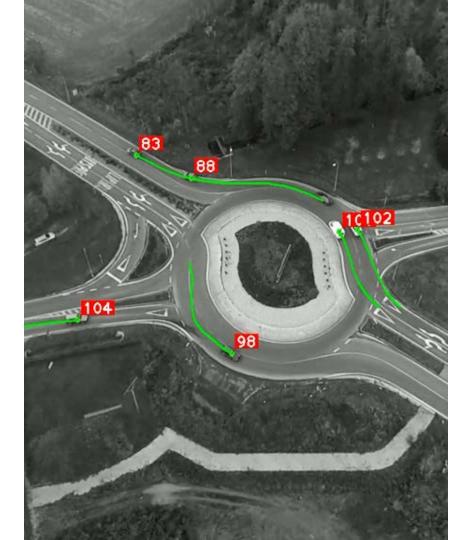
Problems:

- Fast moving targets
 - High "noise" of particle positions at the beginning of tracking
- Occlusions, overlaps, plasticity
 - Smart target representation update algorithm

Postprocess

Aim: Reduce noise in generated tempo-spatial data.

Noise:


- on local scale almost "white noise" (due to nature of particle filter)
- on overall scale sudden short term deviations (occlusions, overlaps)

Solution:

- Local scale: approximating B-spline curve (spatial)
- Overall scale: interpolating cubic spline curve (spatial) and monotone piecewise cubic interpolation (time-distance) to maintain continuity of vehicle velocity.

Demonstration

DataFromSky in action

Follow our project!

See our videos on:

