
MATRIX VISION

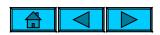
MATRIX VISION

Your partner for:

- Image processing components
 - Industrial cameras
 - Smart cameras
 - PCI and PCI Express frame grabbers
 - Software tools
- Custom developments in hardware and software

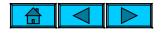
Camera series

- Smart camera mvBlueGEMINI
- 6D perception camera mvBlueSIRIUS
- Embedded Linux camera mvBlueLYNX-X
- Industrial USB 2.0 camera mvBlueFOX
- Industrial GigE camera mvBlueCOUGAR-X
- Industrial Dual GigE camera mvBlueCOUGAR-XD
- Industrial USB 3.0 camera mvBlueFOX3



Markets

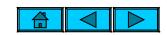
- Packaging
- Deposit and reverse vending machine
- Logistic
- Agricultural machinery
- Traffic
- Security
- Machine tools
- Measuring machines
- Medicine
- Sport



Key features MV cameras

- Wide range of CMOS and CCD sensors
 - Color, gray scale and NIR sensors
- All cameras with FPGAs
 - Reduces host CPU load
 - Camera internal functions
- Internal image memory for reliable image transfer
- Digital inputs and outputs

mvBlueCOUGAR-X



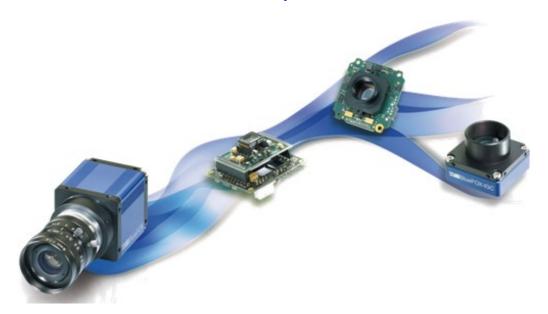
- Gigabit Ethernet camera
- Resolutions up to 10 Mpix with up to 14 bit per pixel
- 64 MB local image memory
- Internal temperature sensors
- Options:
 - POE / POE-I
 - Extended temperature range
 - IP67
 - PLC inputs

mvBlueCOUGAR-XD

- Dual GigE camera
- Only high-graded sensors:
 - Dual & Quadtap CCD with up to12 Mpix
 - Top-notch global shutter CMOS up to 4 Mpix
- 256 MB image memory
- Support of motorized lenses (zoom, focus, iris)

Camera technology mvBlueFOX3

- USB 3.0 CMOS camera
- USB3 Vision standard
- Resolution up to 10 Mpix
- 256 MB image memory
- USB 2.0 compliant
- High-performance industrial driver
- Own series for Sony global shutter CMOS sensors



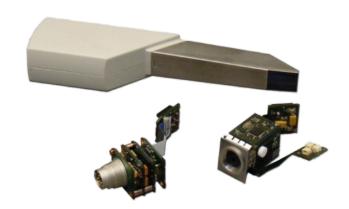
Camera technology mvBlueFOX

- USB 2.0 cameras
- Resolution up to 5 Mpix using up to 12 bit per pixel
- 8 MB image memory
- Variety of technical models with different shapes:
 - Single-board

Smart camera mvBlueGEMINI

- Combines power & performance:
 - Range of functions and power of smart camera +
 - Easy use of vision sensors
 - How?

- mvIMPACT Configuration Studio (mvIMPACT-CS)
 - Create inspection without any programming knowledge and without any knowledge of image processing
 - Intuitive, multi-platform software with wizards
 - Usage of efficient and stable algorithms
 - Combination of these algorithms as useful high-level image processing tools
 - Algorithms optimized for mvBlueGEMINI hardware



Customized solutions

Customizing of standard products

Application specific SW development:

- Blood analysis system
- 3D dental camera

What is a SBC?

Computer consisting only one pcb

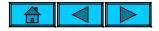
Essential components

- CPU
- Clock signal generator
- RAM
- Reset-logic
- ROM

Typically all functionalities implemented in one chip

Developed for specific tasks

What is a SBC?


Interfaces

- LAN / Wifi / Bluetooth
- VGA / HDMI
- USB2.0 / USB3.0
- SATA
- GPIO / I²C / UART
- CSI / DSI
- CAN-Bus
- JTAG
- RS232

Source: Wikipedia

<u>Advantages</u>

Low energy consumption but high computing power

- Less engery costs
- Less heat emission


Physical dimensions

- Better integratibility
- Allows mobile devices

Low system costs

In most cases 40€ to 200€

Disadvantages

Existing software needs to be compiled for ARM architecture

- Software can be cross compiled if a toolchain is available
- Software can be compiled directly on the target system

Extensibility is not that good as on ,ordinary' PCs

Performance is in most cases not compareable with ordinary PCs

Popular devices

- Raspberry Pi
- Odroid XU3/4
- Odorid C2
- Jetson Tegra K1
- Beagle Bone Black
- Wandboard

Available drivers

ARMv6 (Raspberry Pi 1):

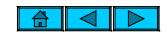
Only mvBlueFOX USB2.0 cameras

ARMv7:

- mvGenTL Acquire
- mvBlueFOX

ARMv8 (aarch64):

- mvGenTL Acquire
- mvBlueFOX



Finding the right SBC

What is important?

- Computing power (CPU / GPU)
 - Is the computing power sufficient for image grabbing and/or image processing?
- Interfaces
 - Do I need USB interfaces or GigE-Interfaces?
 - Is there additional hardware which must be supported?
- Operating System
 - Does the operating system support the drivers?
 - Does it support necessary settings, like jumbo frames, custom usbcore memory settings?

Usage Scenarios

Mobile devices

- Drones
- Handheld devices
- Smartphones and Tablets

Highly integrated systems

- Smart cameras
- Preprocessing units

Cost sensitive applications

IoT applications

Decentralized systems

Source: Wikipedia

Thank you

Do you got any questions?

