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Object detection and tracking

K.Zimmermann, D.Hurych, T.Svoboda, Non-Rigid Object 
Detection with Local Interleaved Sequential Alignment 
(LISA), TPAMI (IF=5), 2014

[1]

[2] K.Zimmermann, J.Matas, T.Svoboda, Tracking by an 
Optimal Sequence of Linear Predictors,TPAMI (IF=5), 
2009.
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Motion and compliance control of flippers

[3] Pecka, Zimmermann, Reinstein,et al. IEEE TIE (IF=6), 2017
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Traffic sign detection and 3D localization

[3] R.Timofte, K.Zimmermann, Luc van Gool, Multi-view 
traffic sign detection, recognition, and 3D localisation, 
MVA (IF=1.5), 2011 

1.5 year PostDoc in Luc van Gool’s lab at  
Katholieke Universiteit Leuven
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Today’s topic

Zimmermann, Petricek, Salansky, Svoboda, Learning for 
Active 3D Mapping,  ICCV oral, 2017

[5]
https://arxiv.org/abs/1708.02074

https://arxiv.org/abs/1708.02074
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Motivation
• Motivation: New Solid State Lidars will allow 

independent steering of depth-measuring rays

S3 principle

Transmitted through 
Optical Phased Array

Emitted laser beams

Controlling optical properties of 
elements, allows to steer laser 
beams in desired directions
Reflected laser beams are 
captured by SPAD array

https://higherlogicdownload.s3.amazonaws.com/AUVSI/14c12c18-fde1-4c1d-8548-035ad166c766/
UploadedImages/2017/PDFs/Proceedings/ESS/Wednesday%201330-1400_Louay%20Eldada.pdf

https://higherlogicdownload.s3.amazonaws.com/AUVSI/14c12c18-fde1-4c1d-8548-035ad166c766/UploadedImages/2017/PDFs/Proceedings/ESS/Wednesday%201330-1400_Louay%20Eldada.pdf
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Problem definition

• Steerable SSL is not yet avaiable 
• Simulation of SSL on Kitti dataset.

1. Learn to reconstruct dense 3D voxel 
map from sparse depth measurements 

2. Optimize reactive control of depth-
measuring rays along an expected 
vehicle trajectory

Goal:
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• Learning of 3D mapping network …………………. 

x

y(x, ✓)

M(x|✓)

M(x|✓)

Overview of active 3D mapping
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Overview of active 3D mapping

• Learning of 3D mapping network …………………. 
• Planning of depth measuring rays …………..…….

M(x|✓)

M(x|✓)

x

y(x, ✓)

J(✓)

J(✓)
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y(x(✓), ✓)
x(✓)

M(x|✓)

• Learning of 3D mapping network …………………. 
• Planning of depth measuring rays …………..……. 

which provides following sparse measurement ….

M(x|✓)

x(✓)

J(✓)

J(✓)

Overview of active 3D mapping
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y(x(✓), ✓)
x(✓)

M(x|✓)

Learning & Planning minimize common objective

argmin
✓

X

voxels

L( , )

J(✓)
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y⇤

y(x(✓), ✓)
x(✓)

M(x|✓)

argmin
✓

X

voxels

L( , )

J(✓)

Learning & Planning minimize common objective
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y(x(✓), ✓)
x(✓)

M(x|✓)

J(✓)

subject to |J(✓)|  K

Learning & Planning minimize common objective

argmin
✓

X

voxels

L(y(x(✓), ✓), y⇤)
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Result of planning is not differentiable
y(x(✓), ✓)

x(✓)

M(x|✓)

J(✓)

subject to |J(✓)|  K

Learning as minimization over    

argmin
✓

X

voxels

L(y(x(✓), ✓), y⇤)

✓
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(fixed sparse input, ground truth output)

M(x|✓)

Locally approximate objective around   

argmin
✓

X

voxels

L(y(x(✓0), ✓), y⇤)

J(✓0)

x(✓0) y(x(✓0), ✓)

subject to |J(✓0)|  K

✓0
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✓0

Minimize approximated objective to get

argmin
✓

X

voxels

L(y(x(✓0), ✓), y⇤)

✓1

✓1=

✓1
SGD
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✓1

✓2 argmin
✓

X

voxels

L(y(x(✓1), ✓), y⇤)

Minimize approximated objective to get ✓1

=

✓0 ✓2
SGD
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Iteratively optimize approximated objective

=✓t+1 argmin
✓

X

voxels

L(y(x(✓t), ✓), y⇤)

• Fix point of this mapping would assure: 
• local optimality of the objective 
• statistical consistency of the learning

• In practise, we iterate until validation error decreases

✓0 ✓1 ✓2 ✓t ✓t+1… …
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Planning of depth measuring rays J

y(x(✓), ✓)
x(✓)

M(x|✓)

J

• No ground truth       availbley⇤

• Objective for planning is approximated



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Planning of depth measuring rays J

voxel i

y

• Objective for planning is approximated
• No ground truth       availbley⇤

occupied
unoccupied

�(y)

1� �(y)

… expected loss in voxel i✏i = H(�(y))
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Planning of depth measuring rays J

voxel i

y

ray j

⇥

in ray j
… prob. that voxel   is not visibleipij

• Objective for planning is approximated
• No ground truth       availbley⇤

… expected loss in voxel i✏i = H(�(y))
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X

voxels

✏i
Y

j2J

pijTotal expected loss:

Planning of depth measuring rays J

• No ground truth       availbley⇤

voxel i

y

rays J
…

Y

j2J

pij … prob. that voxel   is not visible
by any ray j 2 J

i

⇥

• Objective for planning is approximated

… expected loss in voxel i✏i = H(�(y))
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Planning of depth measuring rays J

• Convex approximations 
• Naive greedy algorithm

argmin

J

X

voxels

✏i
Y

j2J

pij subject to |J`|  K

1.  Estimate decrease of the objective            for all rays�j(t) j

• Planning of                           over horizon L 
(i.e. for following positions                  ):` = 1 . . . L

J = {J1 . . . JL}
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1.  Estimate decrease of the objective            for all rays�j(t) j

J t+1
= J t [ argmax

j
�j(t)

2.  Add the ray which maximizes the decrease

Planning of depth measuring rays J

• Convex approximations 
• Naive greedy algorithm

argmin

J

X

voxels

✏i
Y

j2J

pij subject to |J`|  K

• Planning of                           over horizon L 
(i.e. for following positions                  ):` = 1 . . . L

J = {J1 . . . JL}
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j

�j(2)

2. iteration
rays

Planning of depth measuring rays J

�j(1)

j

1. iteration

rays
+

1.  Estimate decrease of the objective            for all rays�j(t) j

J t+1
= J t [ argmax

j
�j(t)

2.  Add the ray which maximizes the decrease
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j

�j(2)

2. iteration
rays

Planning of depth measuring rays J

�j(1)

j

1. iteration

rays

-

1.  Estimate decrease of the objective            for all rays�j(t) j

J t+1
= J t [ argmax

j
�j(t)

2.  Add the ray which maximizes the decrease

!!!          is monotonically non-increasing in    !!!�j(t) t
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• Approximation ratio of prioretized greedy

UB

✓
f

OPT

◆

Planning of depth measuring rays J

• Naive greedy algorithm 
• Prioretized greedy algorithm ) 500⇥less operations
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Experiment: Structure of 3D mapping network

✓ 2 R20M
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0-th iteration ✓0

Experiment: Quantitative evaluation on full dataset

• Training: 20 seq. from “Kitty:Residential category” 
• Testing: 13 seq. from “Kitty:City category” 
• Local maps 320x320x32 voxels (1 voxel ~ 20cm) 
• Selected K=200 rays per position out of 20k  
• Horizon of L=5 positions
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Experiment: Quantitative evaluation on full dataset

• Training: 20 seq. from “Kitty:Residential category” 
• Testing: 13 seq. from “Kitty:City category” 
• Local maps 320x320x32 voxels (1 voxel ~ 20cm) 
• Selected K=200 rays per position out of 20k  
• Horizon of L=5 positions

0-th iteration
4-th iteration ✓4

✓0
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Experiment: Quantitative comparison with [1] on a limited set

• Comparison with modified network (RGB<->depth) from [1]

[1] Choy et al., A unified approach for single a multi-view
3D object reconstruction, ECCV, 2016

• Limited setting (128x128x32) due to memory constraints
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Experiment: Quantitative comparison with [1] on a limited set

• Comparison with modified network (RGB<->depth) from [1]

[1] Choy et al., A unified approach for single a multi-view
3D object reconstruction, ECCV, 2016

4-th iteration ✓4

(ours)

• Limited setting (128x128x32) due to memory constraints
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All maps used axis-aligned voxels of edge size 0.2m.
For generating the sparse measurements, we consider an

SSL sensor with the horizontal field of view of 120 deg

and vertical 90 deg. The possible rays to choose from
are obtained by discretizing the sensor field of view in
160 ⇥ 120 = 19200 directions. At each position, we se-
lect K = 200 rays and ray-trace in these directions until
an occupied voxel is hit or the maximum distance of 100m
(which corresponds to 500 voxels) is reached. Only the rays
which end up hitting an occupied voxel contribute to the
measurements. Local maps xl and yl contain volume of
64m⇥64m⇥6.4m discretized into 320⇥320⇥32 voxels.

6.2. Active Mapping

In this experiment, we used 17 and 3 sequences from
the Residential category for training and validation, respec-
tively, and 13 sequences from the City category for testing.
Following the alternating procedure of learning and plan-
ning as described above (see Sec. 3–5), we learned mapping
networks h0, h1, . . . , ht using batch size 1 and momentum
0.99. The learning rate always started at ↵ = 10

�3. Train-
ing the initial network h0 took 200000 iterations and twice
decreasing the learning rate, to 10

�4 after 100000 itera-
tions and 10

�5 after 150000 iterations. Training the succes-
sive networks ht took 100000 iterations (approximately one
day) with exponentially decreasing learning rate to ⇡ 10

�5.
We have observed that the net ht achieve best results al-
ready after 3 or 4 planning-training iterations.

As can be seen from the ROC curves in Fig. 4, the perfor-
mance after 4 planning-training iterations overcomes net-
work without planning. When we have evaluate network
h0 with planning for new input, ROC curve was almost in-
distinguishable from the one generated by h0 with random
rays.

Input of the network xl contains around 2.5% of known
voxels the rest of the voxels are estimated by the CNN. ROC
curves in this section are computed using global confidence
map ˆ

y and ground truth map y. An examples from recon-
structions are shown in Fig. 5.

6.3. Comparison to a Recurrent Image-based Ar-
chitecture

We provide a comparison with the image-based recon-
struction method of Choy et al. [3], namely the residual
network with Gated Recurrent Units (GRU) units, Res3D-

GRU-3, which we modified to use sparse depth maps of size
160⇥120 instead of RGB images, with K = 200 randomly
selected depth-measuring directions.5 The sensor pose cor-
responding to the the last received depth map was used as
the canonical object pose for reconstruction. The number
of views were fixed to 5 both in training and testing. In this

5Some of these typically did not yield valid measurement.
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Figure 4. Recall to false-positive rate on test data for network
h0 (Random) and h4 (Coupled) . False positives which can be
attributed to discretization error (in 1-voxel distance to occupied
voxels) do not count.

Figure 5. Two examples of global map reconstruction. The black
line denotes trajectory of the car. Top row: The measurement
maps x. Middle: Reconstructed and thresholded maps ŷ. Bot-
tom: Ground-truth maps y.

particular experiment, we used 20 sequences from the Resi-

dential category—18 for training, 1 for validation and 1 for
testing. For comparison we had to limit the batch size to 1

and the size of the outputs to 128 ⇥ 128 ⇥ 32. This corre-
sponds to 16 ⇥ 16 ⇥ 4 GRU units. Our mapping network
was trained and tested on the same training data but using
voxel maps instead of depth images.

A performance comparison in form of ROC curves is

8

trees cars

Reconstructed map

Sparse measurements

Ground truth

Experiment: Qualitative evaluation
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Experiment: Summary & Questions

Zimmermann, Petricek, Salansky, Svoboda, Learning for 
Active 3D Mapping,  ICCV oral, 2017
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