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Abstrakt

Tato doktorská práce je zaměřena na řešeńı problému prouděńı podzemńı
vody v porézńım prostřed́ı, které je ovlivněno př́ıtomnost́ı vrt̊u či studńı.
Model prouděńı je sestaven na základě konceptu redukce dimenźı, který
je hojně využ́ıván při modelováńı rozpukaného porézńıho přostřed́ı,
předevš́ım granit̊u. Vrty jsou modelovány jako 1d objekty, které prot́ınaj́ı
blok horniny. Propojeńı těchto domén v redukovaném modelu zp̊usobuje
singularity v řešeńı v okoĺı vrt̊u. Vrty i porézńı médium jsou śıt’ovány
nezávisle na sobě, což vede k výpočetńım śıt́ım kombinuj́ıćım elementy
r̊uzných dimenźı.

Jádrem doktorské práce je pak vývoj specializované metody konečných
prvk̊u pro výše popsaný model. Pro umožněńı propojeńı śıt́ı r̊uzných
dimenźı a pro zpřesněńı aproximace singularit v okoĺı vrt̊u je použita
rozš́ı̌rená metoda konečných prvk̊u (XFEM), v rámci ńıž jsou navrženy
nové typy obohaceńı konečně-prvkové aproximace. Metoda XFEM je
nejprve aplikována v modelu pro tlak, dále je navrženo obohaceńı pro
rychlost a metoda je použita ve smı́̌seném modelu, jehož řešeńım jsou
rychlost i tlak.

Doktorská práce se dále detailně věnuje numerickým aspekt̊um v metodě
XFEM, a to předevš́ım adaptivńım kvadraturám, volbě velikosti oboha-
cené oblasti nebo podmı́něnosti výsledného lineárńıho systému. Vlastnosti
navržené XFEM metody a optimálńı konvergence jsou ověřeny na sérii
numerických experiment̊u. Praktickým výstupem doktorské práce je im-
plementace metody XFEM jako součásti open-source softwaru Flow123d.

Kĺıčová slova: Rozš́ı̌rená metoda konečných prvk̊u (XFEM), singu-
larita, śıtě kombinovaných dimenźı, Darcyho prouděńı, rozpukané porézńı
prostřed́ı
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Abstract

In this doctoral thesis, a model of groundwater flow in porous media influ-
enced by wells (boreholes, channels) is developed. The model is motivated
by the reduced dimension approach which is being often used in fractured
porous media problems, especially in granite rocks. The wells are modeled
as lower dimensional 1d objects and they intersect the surrounding bulk
rock domains. The coupling between the wells and the rock then causes
a singular behavior of the solution in the higher dimensional domains in
the vicinity of the cross-sections. The domains are discretized separately
resulting in an incompatible mesh of combined dimensions.

The core contribution of this work is in the development of a specialized
finite element method for such model. Different Extended finite element
methods (XFEM) are studied and new enrichments are suggested to bet-
ter approximate the singularities and to enable the coupling of the wells
with the higher dimensional domains. At first the XFEM is applied in
a pressure model, later an enrichment for velocity is suggested and the
XFEM is used in a mixed model, solving both velocity and pressure.

Different numerical aspects of the XFEM is studied in details, including
an adaptive quadrature strategy, a proper choice of the enrichment zone
or a conditioning of the resulting linear system. The properties of the
suggested XFEM are validated on a set of numerical tests and the optimal
convergence rate is demonstrated. The XFEM is implemented as a part
of the open-source software Flow123d.

Keywords: Extended Finite Element Method (XFEM), Singularity,
Meshes of combined dimensions, Darcy flow, Fractured porous media
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Mathematical notation

Vh discrete space of the primary variable
Qh discrete space of the secondary variable
Λh discrete space of Lagrange multipliers
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Ωd domain of dimension d
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T id, F

i
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pd pressure in d-dimensional domain
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n (outward) normal unit vector
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gdN Neumann b.c. in d-dimensional domain
σw, σ

m
w permeability coefficient between well and aquifer

rw, ρw, Rw distance function, radius and enrichment radius
Zw enrichment zone of a well w
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V
norm associated to a space V

〈·〉 average operator
{·} fluctuation operator
πT , π

RT
T , πh interpolation operators
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1 Introduction

A large set of problems with finite element models, that people nowadays
deal with, is connected with insufficient accuracy in cases where the model
includes large and very small scale phenomena at once. One can imagine
a simulation of groundwater flow in a large domain (hundreds of meters or
even kilometers) which can be significantly influenced by thin fractures in
the porous media or artificial wells and boreholes (several centimeters in
diameter). These disturbances bring discontinuities and singularities into
the model which are hard to capture at the geometric level and even harder
to approximate with the standard polynomial finite elements (FE) at the
discretization level. There are several ways one can follow to increase the
accuracy of the standard finite element method FEM in such models.

Adaptive meshes can be used in such cases, but it can cost a lot of
computational power to build a very fine mesh, and then solve the prob-
lem with increasing number of degrees of freedom. It requires very robust
meshing algorithms when complex geometries are in question. There can
be other constraints on the mesh generation in specific applications: mesh
elements quality, presence of hanging nodes, compatible meshes. Consid-
ering time dependent problems, such as an opening of fractures in me-
chanics, remeshing at each time step is required which further amplifies
the demands on the meshing tools. All these aspects make the generation
of computational meshes hard or even close to impossible.

Alternatively, a reduced dimension concept is often used and models
combining different dimensions are developed. The geometry is decom-
posed in objects of different dimensions (2d fractures, 1d wells, 0d point
sources) and the meshes of these domains are created independently. Later
the modeled processes must be coupled between the domains of different
dimensions. The coupling concepts are mostly available at the continuous
level but their implementation at the discrete level is non-trivial and prob-
lems often appear there. Two types of meshes are used in these models:
compatible and incompatible. An incompatible mesh is the one, where
the intersections of the computational domains are not aligned to nodes
and sides of elements. Such meshes with arbitrary intersections are easier
to construct, but bring a whole new set of problems in the coupling.

8



Finally, there are the Extended finite element methods (XFEM). The
XFEM enables us to take advantage of an a priori knowledge of the model
solution character such as discontinuity or singularity of searched quanti-
ties. The key aspect of the XFEM is that it allows to locally incorporate
non-polynomial functions, like a jump or a singular function, into the finite
element solution in places, where these features are expected to appear.
This way the standard finite element approximation space is extended
(enriched) and it is able to approximate the small scale phenomena more
accurately. See an example of XFEM usage in 1d-2d coupling with point
intersections in Figure 1.1.

This thesis is aimed at further development of the XFEM and its usage
in reduced dimensional models in groundwater flow problems, especially
in non-planar 1d-2d and 1d-3d coupling. The incompatible meshes are
considered and the XFEM is used to glue the modeled processes in differ-
ent dimensions back together. A model is searched that fits in the concept
of the software Flow123d, which is being developed at the Technical Uni-
versity of Liberec.

Figure 1.1: An XFEM example in 1d-2d coupling with singularities at in-
tersection points. Distribution of pressure in 2 aquifers (horizontal planes)
intersected by 5 wells (vertical lines) is displayed. The model is computed
on a coarse mesh without refinement (visible at the bottom).
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1.1 Flow123d

The practical outcome of this thesis is a new model and its solver im-
plemented as a part of the software Flow123d. Flow123d, last version
2.2.1 released in 2018 [1], is a simulator of underground water flow, solute
and heat transport in fractured porous media. The software is devel-
oped as an open source code under the versioning system Git where the
eponymous project can be found, or one can reach it via the web page
http://flow123d.github.io.

The main feature of the software is the ability to compute on complex
compatible meshes of combined dimensions, where the continuum models
and discrete fracture network models can be coupled. Only the coupling
of co-dimension 1 is considered, i.e. coplanar 1d-2d and 2d-3d cases. This
thesis extends the groundwater flow model to non-planar 1d-2d and 1d-3d
coupling.

1.2 Aims of Thesis

The aims of the thesis are in further development of reduced dimensional
FEM models, especially of co-dimension 2, in combination with the XFEM
and incompatible meshes, where the XFEM provides a way for coupling
the domains of different dimensions together and to significantly improve
the finite element approximation accuracy.

The research aims can be summarized in two major points

• Propose suitable XFEM enrichments for singular pressure and ve-
locity in Darcy flow model. If possible, emphasize a good approxi-
mation of the velocity field.

• Suggest new data structures and algorithms for the realization phase
in the software Flow123d.

The accuracy of the velocity field, is in the main focus in most applications,
e.g. when the flow model is coupled with a transport equation.

At first, a 1d-2d model with XFEM resolving point singularities in
pressure based on [2, 3] is developed. Different XFEMs [4, 5] are investi-
gated. Then a model for the same problem in the mixed-hybrid form is
derived based on [6]. A new enrichment for velocity is suggested and im-
plemented in Flow123d. The model is further extended into 1d-3d coupled
model.

10
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1.3 Document Structure

The thesis is divided into five major parts. In Chapter 2, the reduced
dimension concept is described in details and the meshes of combined
dimensions are defined. The models of groundwater flow, coupling non-
planar 1d-2d and 1d-3d domains, are formulated and put in the context
of the software Flow123d and other works.

The background research on various XFEMs is provided in Chapter
3. It is then followed by Chapter 4 where a well-aquifer pressure model is
studied and in which the singular enrichments are applied by the means of
the XFEM. Various aspects and properties of the model and the method
are studied, different enrichment strategies are compared.

Next, the mixed-hybrid model for pressure and velocity is formulated
in Chapter 5. A new enrichment for velocity is proposed in the mixed
form. The coupled models both for non-planar 1d-2d and 1d-3d are de-
fined and followed by several numerical tests demonstrating the properties
of the new enrichment in XFEM.

Chapter 6 is dedicated to the intersection algorithms. The concept
of Plücker coordinates is introduced and algorithms for various intersec-
tion cases of simplicial elements is described. Numerical experiments are
provided.

The thesis is closed with the conclusions in the last Chapter 7 which
is followed by the list of author’s publications and the bibliography.
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2 Reduced Dimensional Models

In this chapter, the concept of combining models of different spatial di-
mension is introduced. The thesis is put into the context of the so called
reduced dimensional models and the long-term research at the Technical
University of Liberec concentrated around the software Flow123d. Fi-
nally, a well aquifer model which is to be solved in this work is defined,
combining 1d-2d and 1d-3d dimensions.

The equivalent continuum concept includes the fractures and wells
in the model by changing the global properties of the modeled volume
(e.g. increased/decreased hydraulic conductivity). This homogenization
approach smears local effects of the disruptions but the model can still
provide a valid approximation for an initial global view of the system.
Since the underlying computational mesh does not need to represent the
small scale objects, the equivalent continuum models can be computa-
tionally cheap, but they cannot capture the local effects accurately. The
other approach considers the disruptions in a discrete sense, keeping its
sizes and properties explicitly in the model. This brings more demanding
work at the geometric level, where the disruptions have to be represented
so that a suitable computational mesh can be built. A significant simplifi-
cation in this concept is to reduce the dimension of the local phenomena,
if possible, and obtain a reduced dimensional model,

The concept of reduced dimensions is fundamental in the Discrete
Fracture Network (DFN) models [7] and in models combining DFN with
equivalent continuum. The spacial discretization of such models leads
to meshes composed of elements of different dimension, in the fractured
porous media context e.g. in [8, 9, 10]. There is a limited number of mod-
els for coupling of co-dimension 2: 1d-3d coupling or point intersections
in non-planar 1d-2d coupling. Such models solving flow and transport in
vascular systems are e.g. in [11] and [12].

In the thesis, a reduced dimensional model for fractured porous media
being developed by the means of the software Flow123d is extended by
nonplanar 1d-2d and 1d-3d models.
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2.1 Mesh of Combined Dimensions

As pointed out before, the reduced dimensional models lead to computa-
tions on meshes of combined dimensions. The reduced dimensional con-
cept splits the computational domain into parts of different dimensions
Ωd, d = 1, 2, 3. The domains Ω2 and Ω1 are polytopic (i.e. polygonal
and piecewise linear, respectively). Apart from Chapter 4, the simplicial
meshes are considered. The compatible (or conforming, matching) meshes
satify the compatibility conditions, i.e. the (d − 1)-dimensional elements
are either between d-dimensional elements and match their faces or they
extend out of Ωd.

An incompatible mesh (or non-conforming or non-matching), does not
have to satisfy the compatibility conditions and therefore the intersect-
ing domains can be meshed independtly, reducing the requirements on
the meshing tools significantly. Then of course the intersections must be
computed and the discrete model must deal with the incompatible cou-
pling. Therefore Chapter 6 is dedicated to a development of algorithms
for efficient computation of intersections of incompatible meshes.

2.2 Well-Aquifer Model

Wells are considered as straight narrow tubes (cylinders) ΩwC of radius ρw,
indexed by w ∈ W = {1 . . .W}. These are reduced to 1d manifolds Ωw1 ,
parameterized using a mapping νw(t) : [0, 1] → Ωw1 . A lateral surface of
a cylinder ΩwC is denoted ∂ΩwC .

A steady groundwater flow governed by Darcy’s law is considered in
all domains. Without any coupling terms, one writes for every dimension

1

δd
K−1
d ud +∇pd = 0 in Ωd (2.1)

divud = δdfd in Ωd (2.2)

where δdud [ms−1] is the unknown Darcian velocity, pd [m] is the un-
known pressure. Parameter δd is the complement measure of the domain:
thickness [m] in 2d, cross-section [m2] in 1d and δ3 = 1 [−] for consistency.
Since the wells are considered as cylinders, the cross-section δ1 is constant
per well: δ1(x) = δw1 = πρ2

w for all x ∈ Ωw1 . The quantity ud [md−4s−1]
itself can be seen as flux density, i.e. flux through Ωd with complemen-
tary dimension δd = 1. The conductivity tensor Kd [ms−1] is generally
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3 × 3 matrix, symmetric and positive definite, possibly representing the
anisotropy of the media. In the source term, fd [s−1] denotes the water
source density.

2.2.1 1d-2d Model

A system of aquifers separated by aquitards is considered (based on Gracie
and Craig [2, 3]). The aquifers, denoted Ωm2 , m ∈ M = {1 . . .M}, are
underground horizontal layers of permeable rock containing water. The
aquifers’ boundary consists of three parts ∂Ωm2 = Γm2D ∪Γm2N ∪

⋃
w∈W Γmw ,

where Dirichlet and Neumann boundary conditions are prescribed and
cross-sections of the wells and aquifers Γmw = Ωm2 ∩ ∂ΩwC .

If possible, and apparent from context, the domain unions are denoted

Ω1 =
⋃
w∈W

Ωw1 , Ω2 =
⋃

m∈M

Ωm2 , Γ# =
⋃

m∈M

Γm# (2.3)

with # being w, 2D or 2N .
On Γmw , a decomposition of an arbitrary function q ∈ C(Ωm2 ) on av-

erage and fluctuation parts is defined, in the same manner as it can be
found in [13],

q = 〈q〉mw + {q}mw on Γmw , 〈q〉mw =
1

|Γmw |

ˆ
Γm
w

q ds. (2.4)

The definition of the 1d-2d well-aquifer problem follows:

Problem 2.2.1. Find [u1, u2] and [p1, p2] satisfying

δ−1
d K−1

d ud +∇pd = 0 in Ωd, d = 1, 2, (2.5a)

divu2 = δ2f2 in Ω2, (2.5b)

divu1 = δ1f1 + fw in Ωw1 , ∀w ∈ W, (2.5c)

〈−δ2K2∇p2 · n〉mw = Σmw ∀w ∈ W, ∀m ∈M, (2.5d)

{p2}mw = gmw ∀w ∈ W, ∀m ∈M, (2.5e)

pd = gdD on ΓdD, d = 1, 2, (2.5f)

δdKd∇pd · n = gdN on ΓdN , d = 1, 2 (2.5g)

where

Σmw = δ2(xmw )σmw
(
〈p2〉mw − p1(xmw )

)
, fw =

∑
m∈M

|Γmw |Σmw δt(t− tm).

14



Term δt(t− tm) is a Dirac delta measure. The average outward flux from
the aquifer over Γw acts as a positive source term in the well (blue colored
terms).

2.2.2 1d-3d Model

In the 1d-3d model, the aquifer is not reduced to a plane but it is repre-
sented as a 3d domain Ω3, with a boundary ∂Ω3 = Γ3D∪Γ3N ∪

⋃
w∈W Γw,

where Dirichlet and Neumann boundary conditions are prescribed and
cross-sections of the wells and aquifers Γw = Ω3 ∩ ∂ΩwC , analogically to
the 1d-2d model.

On Γw the average decomposition w = 〈g〉w+{g}w is defined in a sim-
ilar manner as in the 1d-2d case. However, the average is computed over
a circle edge, perpendicular to Ωw1 , with its center at a point νw(t) ∈ Ωw1

〈g〉w(t) =
1

2πρw

ˆ 2π

0

g(t+ ρwnΩw
1

(t, θ))ρw dθ. (2.6)

with nΩw
1

(t, θ) being the unit normal vector of Ωw1 at point νw(t) in the
direction determined by the angle θ.

The definition of the 1d-3d problem follows:

Problem 2.2.2. Find [u1, u3] and [p1, p3] satisfying

δ−1
d K−1

d ud +∇pd = 0 in Ωd, d = 1, 3, (2.7a)

divu3 = δ3f3 in Ω3, (2.7b)

divu1 = δ1f1 + Σw in Ωw1 , ∀w ∈ W, (2.7c)

〈−δ3K3∇p3 · n〉w = Σw in Ωw1 , ∀w ∈ W, (2.7d)

{p3}w = gw ∀w ∈ W, (2.7e)

pd = gdD on ΓdD, d = 1, 3, (2.7f)

δdKd∇pd · n = gdN on ΓdN , d = 1, 3 (2.7g)

where
Σw(x) = δ3σw(x)

(
〈p3〉w(x)− p1(x)

)
x ∈ Ωw1 .

One can see the dimensional coupling terms highlighted in the blue
color. In contrast to the 1d-2d case, Σw(x), x ∈ Ωw1 , varies through the
well domain.
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3 Extended Finite Element Method

A background research on the XFEM is provided in this chapter, de-
scribing the fundamentals and giving an overview on the evolution of the
XFEM. Different enrichment methods and various types of enrichments
are discussed.

3.1 Basic Concept

The history and the early development of the XFEM is well written in
an overview article by Fries and Belytschko [14]. The main feature of
this method is the extension of a space of polynomial shape functions of
the finite element method with a special function, that enables to better
approximate some local effects. This is called enrichment. The special
function (enrichment function) is often non-polynomial and describes dis-
continuity or singularity, where polynomials leak accuracy.

The XFEM is mainly perceived as a method for local enrichment,
which means that the enrichment is applied only in a small subdomain –
several elements of the computational mesh close to the local phenomenon.
The XFEM solution with a single enrichment is sought in the form

u(x) =
∑
α∈I

aαvα(x) +
∑
α∈J

bαNα(x)L(x) (3.1)

where aα are the standard FE degrees of freedom and bα are the degrees of
freedom coming from the enrichment, vα are the standard FE basis shape
functions. We denote the index sets I and J that contain all indices
of the standard and enriched degrees of freedom, respectively. L is the
actual enrichment function and Nα is a linear FE basis functions used as
the partition of unity

∑
αNα(x) = 1.

3.1.1 Global Enrichment Functions

Two different types of types of enrichments are discussed in this section –
discontinuity and singularity. A discontinuity of the quantity of interest
can be strong or weak, depending on whether its value or its derivative
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is discontinuous. The location of the discontinuity is often described by
a level set function, which itself can be a part of searched solution.

A singularity, which is of the main interest in the thesis, is described
by a function with singularity concentrated in a single point in 2d or
along a line in 3d. It has symmetric radial character and thus it is often
defined in polar (2d) or cylindrical (3d) coordinate system. Typical global
enrichment function are summarized e.g. in the Natarajan’s thesis [15].

3.1.2 Enrichment Zone

The choice of the enrichment zone, i.e. elements that are enriched, de-
pends on the enrichment type. In case of discontinuities, only the nodes
of cut elements are enriched.

In case of singularity, the enrichment must well approximate the adja-
cent high gradients. To this end, the enrichment zone is typically chosen
as a radial area in the vicinity of the singularity of fixed (enrichment) ra-
dius, which is necessary to obtain optimal convergence rate, discussed e.g.
in [4]. The optimal size of the enrichment zone is however not addressed,
apart from [16], where an a priori estimate for the enrichment radius de-
pendent on h is provided, although containing an unknown constant. This
matter is investigated in detail later in the thesis.

3.2 Enrichment Methods

In this section, different types of available enrichment methods are dis-
cussed. In [4, 14] the Corrected XFEM is introduced and the so called
blending elements (not all element nodes are enriched) and reproducing
elements (all element nodes enriched) are differentiated. The problem
with lack of the partition of unity on the blending elements is addressed
and a solution is suggested by means of the ramp function G(x) in (3.2).
G(x) is equal 1 on reproducing elements, is a ramp in blending elements
and diminishes elsewhere.

L(x) = G(x)s(x), (3.2)

Lα(x) = G(x) [s(x)− s(xα)] . (3.3)

Further the shifted enrichment is suggested leading to local enrichment
function in (3.3), xα being element nodes.
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Next, the Stable Generalized FEM was developed in [5, 17] and applied
in an elastic fracture model. This method is supposed to solve the problem
with ill-conditioning, which is often met when using enrichments. The
local enrichment function on an element T is defined

Lα|T (x) = s(x)− πT (s)(x), πT (s)(x) =
∑

β∈IN (T )

Nβ(x)s(xβ). (3.4)

where the interpolation πT is built using the linear shape functions associ-
ated with element nodes. It was later shown in [18] that further care must
be taken for different enrichment types for this method to yield optimal
convergence and not to suffer with ill-conditioning independent of mesh –
discontinuity (or singularity) alignment.

3.3 XFEM in Flow Problems on Meshes of Combined Di-
mensions

There is much less to be found on the usage of the XFEM in the field
of flow modeling, especially regarding the dimensions coupling, than in
mechanics. Apart from the references on various types of the XFEM in
previous sections, several references dealing with fractured porous media
are provided, e.g. [19, 20]. However, no model suitable for a singularity
approximation using XFEM in groundwater flow i available.
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4 Pressure Model with Singularities

In this chapter, the XFEM with different enrichment techniques is ap-
plied on a pressure well-aquifer model in 1d-2d case. The problem for the
primary unknown is defined, its weak form is derived and the existence
of a unique discrete solution is proved. Several important numerical as-
pects are inspected, mainly an adaptive quadrature and a choice of an
enrichment radius with respect to the convergence of the methods.

4.1 Coupled 1d-2d Model (Primary Weak Form)

Problem 2.2.1 is rearranged, velocity ud is substituted from the Darcy’s
law and the problem is solved with pressure pd as the primary unknown
quantity.

Considering standard Sobolev spaceH1
0 (Ωd) =

{
qd ∈ H1(Ωd); qd|ΓdD =

0
}

, and taking the Dirichlet boundary condition into account, the trial
space V and the test space V0 are defined

V = H1(Ω1)×H1(Ω2), (4.1)

V0 = H1
0 (Ω1)× V 1

0 (Ω1
2)× · · · × VM0 (ΩM2 ), (4.2)

with

V m0 (Ωm2 ) =
{
q2 ∈ H1

0 (Ωm2 ) : {q2}mw = 0, ∀w ∈ W
}
∀m ∈M. (4.3)

The weak solution p = [p1, p2] ∈ V and the test functions q = [q1, q2] ∈ V0

are denoted and the weak problem is defined

Problem 4.1.1. Find p = p0 + pw + pD ∈ V such that

a(p0, q) = l(q)− a(pw, q)− a(pD, q) ∀q ∈ V0 (4.4)

where

a(p, q) =

ˆ
Ω2

δ2K2∇p2 · ∇q2 dx+

ˆ
Ω1

δ1K1∇p1 · ∇q1 dx

+
∑
w∈W
m∈M

|Γmw | δ2σmw (〈p2〉mw − p1(xmw ))(〈q2〉mw − q1(xmw )) (4.5)
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l(q) =

ˆ
Ω2

δ2f2q2 dx+

ˆ
Ω1

δ1f1q1 dx+

ˆ
Γ2N

g2Nq2 ds+

ˆ
Γ1N

g1Nq1 ds

(4.6)

for p0 ∈ V0 and given fd ∈ L2(Ωd) and gdN ∈ L2(ΓdN ), d = 1, 2, while
pw, pD ∈ V are functions chosen such that they satisfy Dirichlet boundary
conditions.

For the solution p of Problem 4.1.1 to be unique it is shown, that it is
enough to fix the pressure at the top of a single well (e.g. a pumping well
where the pressure can be measured), possibly with Neumann boundary
condition at the rest of the boundary.

4.2 Discretization

Problem 4.1.1 is discretized using the linear FE and the XFEM enrichment
in the aquifers domains in the vicinity of the singularities. The 2d part of
the discrete solution is searched in the form

p2h(x) =
∑

α∈I2N

aαN2α(x) +
∑
w∈W

∑
α∈Jw

2N

bαwN2α(x)Lαw(x) (4.7)

where J w2N ⊂ I2N denotes the indices of enriched nodes in T2 by the well
w, and the functions N2αLαw are the local enrichment functions, while
N2α, the linear FE shape functions, are playing the role of PU.

The local enrichment is chosen according to the particular choice of the
enrichment type in Section 3.2. The singular global enrichment function
is defined below.

The global enrichment function can be obtained from the solution
of a local problem on the neighborhood of the well. In this case, it is
a logarithmic function radially symmetric around the well cross-section
xw = [xw, yw]:

sw(x) =

{
log(rw(x)) rw > ρw,

log(ρw) rw ≤ ρw,
(4.8)

where rw(x) = ‖x−xw‖ =
√

(x− xw)2 + (y − yw)2 is the distance func-
tion.

The XFEM and the SGFEM apply the enrichment functions only lo-
cally. Due to the radial character, it is natural to consider a circular
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enriched domain Zw = BRw (xw) of the well w given by the enrichment
radius Rw. Four different enrichments are defined according to Section
Section 3.2: standard XFEM, ramp function XFEM, shifted XFEM and
SGFEM ; which are later compared.

In order to compute the entries of the system matrix, the expres-
sions containing the enrichment functions have to be integrated accurately.
There are two aspects which the integration must handle properly:

• the steep gradient of enrichment shape functions in the vicinity of
the singularity,

• the singularity cut-off edge geometry.

The instability in the integration in [2] is investigated. An asymptotic
analysis of the integration error is presented and new adaptive quadrature
rules are defined. Additionally, an adaptive quadrature in polar coordi-
nates is suggested.

4.3 Single Aquifer Analytic Solution

A pseudo-analytic solution is defined in this section. Considering multiple
singularities in the domain, the solution can be obtained using the super-
position principle. The solution is split into singular and regular part and
searched in the form

p2 = psin + preg =
∑
j∈W

aj log rj + preg. (4.9)

The averages 〈·〉w are evaluated numerically.

4.4 Numerical Tests

The model as described in this chapter was implemented in C++ language
using the Deal II library [21], , version 8.0. The model implementation
and all the XFEM extensions to the standard FE code were suggested
by the author. The source is available on GitHub: https://github.com/

Paulie14/xfem_project.
Two selected results are displayed in Graphs 4.1-4.2 and Figure 4.1. In

Graph 4.1, different enrichment methods defined in 4.2 are compared on
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Graph 4.1: Convergence of the L2 norm of the approximation error.
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Graph 4.2: Dependence of the error on the enrichment radius for different
element sizes h.

a model including a single well and nonzero source term. Optimal conver-
gence order is reached in all XFEMs. The ”FEM reg” data comes from
the problem without the singularity solved by standard FEM and with
optimal convergence order 2.0 for a reference. The standard XFEM dis-
plays larger error on blending elements as expected. However, it together
with the ramp function XFEM suffers ill-conditioning. The standard FEM
converge slowly with order 0.5.

The second Graph 4.2 displays solution error depending on the enrich-

22



ment radius for different mesh refinements. It shows that the enrichment
radius is worth expanding as long as the error of the singular part of the
solution is significant in comparison to the error if the regular part. Fur-
ther increasing of Rw then does not bring increased accuracy. Ro is the
optimal enrichment radius where these two error parts are well balanced
– theoretical estimate agrees with the numerical result.
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Figure 4.1: L2 error distribution in Test case 5 for two different Rw,
represented by green circles.

In Figure 4.1 the approximation error is displayed in case of 2 wells and
sinusoidal source term along x axis considered. The error of the regular
part of the solution is apparent, the error of the singular part is inferior in
case of larger enrichment radius. In this problem, the ill-conditioning for
shifted XFEM is reported, due to multiple enrichment in the enrichment
zone overlap.
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5 Mixed Model with Singularities

In this chapter, a mixed hybrid model for Problems 2.2.1 and 2.2.2 is de-
rived, an enrichment for velocity is suggested and numerical experiments
in Flow123d are presented, demonstrating the advantages of the approach.
The strategic literature, which this chapter is build upon, is listed in the
beginning. Foremost the article [6] is mentioned, where the current model
of fractured porous media solved in mixed-hybrid form and implemented
in Flow123d is described.

5.1 Mixed Dirichlet Problem

At first, a model considering only a 2d aquifer and wells reduced to their
cross-sections Γw with fixed pressure prescribed as a Dirichlet boundary
condition is solved. Its weak form is derived and the existence of a unique
continuous solution of the resulting saddle-point problem is shown by the
theory in [22].

The derived saddle-point problem is discretized using the hybridization
and the lowest Raviart-Thomas FE. The existence and uniqueness of the
solution is provided for the unenriched discrete solution.

Then the enrichment of velocity is suggested. The global enrichment
function for velocity is the derivative of logarithmic enrichment function
introduced in Section 4.2

sw(x) = − 1

Se

rw
r2
w

, Se = 2πρw. (5.1)

where Se is called an effective (lateral) surface. The properties of sw are
discussed.

An enrichment, where only a single enrichment function is considered
per singularity, is suggested. On each enriched element T i, i ∈ J wE , an
SGFEM like interpolation of the global enrichment function, see (3.4), is
defined

Lw(x)|T i = sw(x)− πRTT i (sw)(x). (5.2)

where πRTT i is the interpolation operator to standard Raviart-Thomas FE
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space. The enriched discrete velocity then takes the form

uh =

nF ·NE∑
i=1

aiψi +
∑
w∈W

bwLw (5.3)

where the first part is the standard approximation (nF is number of faces
per element) and the second part is the enrichment.

A numerical test for inf-sup stability validation is suggested there, to
check the LBB condition experimentally, since a theoretical proof is un-
available. A corresponding generalized eigenvalue problem is formulated.
However, unclear relation between the mixed and mixed-hybrid form re-
garding their generalized eigenvalue problems is reported.

Finally, the first numerical results of the 2d Dirichlet problem are
presented. Optimal convergence is demonstrated on a series of simple
structured simplicial meshes which motivates for further development of
the model.

5.2 Coupled 1d-2d Model

The fully coupled mixed-hybrid 1d-2d model is defined. To this end, the
following discretization spaces are considered

Vh = V regh (Ω1)× Vh(Ω2), (5.4)

Qh = Qh(Ω1)×Qh(Ω2), (5.5)

Λh = Λh(F1)× Λh(F2)× Λenrh (5.6)

The velocity space is composed of V regh (Ωd), d = 1, 2, the standard
Raviart-Thomas zero order FE space, and Vh(Ω2) = V regh (Ω2) ⊕ V enrh ,
where V enrh is the enriched space. Qh(Ωd), d = 1, 2, is the L2 space for
pressure on elements. Λh(Fd), d = 1, 2, is the space of Lagrange multi-
pliers in the hybridization (pressure on element faces Fd) and Λenrh is the
space of average traces of fluxes normal components on the well cross-
sections. The saddle point problem then reads:

Problem 5.2.1. Find uh = [ud] ∈ Vh and ph = [pd, λd, λ
m
w ] ∈ Qh × Λh,

d = 1, 2, m ∈M, w ∈ W which satisfy

ah(uh,vh) + bh(vh, ph) = 〈G,vh〉V ′
h
×Vh

∀vh ∈ Vh, (5.7a)

bh(uh, qh)− cw(ph, qh) = 〈F, qh〉Q′
h
×Qh

∀qh ∈ Qh × Λh (5.7b)
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where the forms are

ah(uh,vh) =
∑
d=1,2
i∈IdE

ˆ
T i
d

δ−1
d udK

−1
d vd dx,

bh(vh, ph) =
∑
d=1,2
i∈IdE

[ˆ
T i
d

−pd div vd dx,+

ˆ
∂T i

d
\∂Ω

λd(vd · n) ds

]

+
∑
w∈W
m∈M

ˆ
Γm
w

λmw 〈v2 · n〉mw ds,

cw(ph, qh) =
∑
w∈W
m∈M

ˆ
Γm
w

δ2(xmw )σmw
(
p1(xmw )− λw

)(
q1(xmw )− µw

)
ds,

〈G,vh〉V ′
h
×Vh

=
∑
d=1,2

∑
i∈Td

ˆ
∂T i

d
∩ΓdD

−gdD(vd · n) ds,

〈F, qh〉Q′
h
×Qh

=
∑
d=1,2

∑
i∈Td

ˆ
T i
d

−δdfdqd dx,

The coupling terms are emphasized in blue color.

5.3 Coupled 1d-3d Model

The 1d-3d coupled model is built in the same manner as the 1d-2d prob-
lem.

The well distance function rw in 3d is defined as a shortest distance
between a point and the line representing the well. The enrichment func-
tion Lw is suggested in the same form as in 2d and the its properties are
demonstrated. The choice of the enrichment zone in 3d is discussed.

Using the same notation as in (5.4)- (5.6) for the discrete space

Vh = V regh (Ω1)× Vh(Ω3), (5.8)

Qh = Qh(Ω1)×Qh(Ω3), (5.9)

Λh = Λh(F1)× Λh(F3)× Λenrh , (5.10)

the saddle point problem for 1d-3d model is formulated
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Problem 5.3.1. Find uh = [ud] ∈ Vh and ph = [pd, λd, λw] ∈ Qh × Λh,
d = 1, 3, w ∈ W which satisfy

ah(uh,vh) + bh(vh, ph) = 〈G,vh〉V ′
h
×Vh

∀vh ∈ Vh, (5.11a)

bh(uh, qh)− cw(ph, qh) = 〈F, qh〉Q′
h
×Qh

∀qh ∈ Qh × Λh (5.11b)

where the forms are

ah(uh,vh) =
∑
d=1,3
i∈IdE

ˆ
T i
d

δ−1
d udK

−1
d vd dx,

bh(vh, ph) =
∑
d=1,3
i∈IdE

[ˆ
T i
d

−pd div vd dx,+

ˆ
∂T i

d
\∂Ω

λd(vd · n) ds

]

+
∑
w∈W

[
2πρw |Ωw1 |

∑
i∈I1E
T i
1⊂Ωw

1

ˆ
T i
1

λw(t)〈v3 · n〉w(t) dt

]
,

cw(ph, qh) =∑
w∈W

[
2πρw |Ωw1 |

∑
i∈I1E
T i
1⊂Ωw

1

ˆ
T i
1

σw
(
p1(t)− λw(t)

)(
q1(t)− µw(t)

)
dt

]
,

〈G,vh〉V ′
h
×Vh

=
∑
d=1,3

∑
i∈Td

ˆ
∂T i

d
∩ΓdD

−gdD(vd · n) ds,

〈F, qh〉Q′
h
×Qh

=
∑
d=1,3

∑
i∈Td

ˆ
T i
d

−δdfdqd dx.

The coupling terms are again emphasized in blue color.

5.4 Flow123d implementation

Several aspects of the implementation in the software Flow123d is de-
scribed in this section. Mainly, the changes in the input file format are
addressed, adaptive integration and refined output mesh are described.

The adaptive integration strategy is adopted from the pressure model
from Chapter 4. Additionally, the quadrature rules are generalized to
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all the dimensions, which enables computations on 2d and 3d elements,
including integration over their faces which is necessary in the mixed
model.

An approach to the visualization of the results containing enriched
non-polynomial approximation in VTK format is described. The con-
struction of an adaptively refined output mesh is suggested, in order to
display singular enrichments.

5.5 Numerical Tests in Flow123d

5.5.1 Test Cases in 1d-2d

In this section, a set of numerical tests of the 1d-2d model defined in
5.2 is provided. Some of the properties of the velocity enrichment are
demonstrated, optimal convergence rate in velocity L2 error is shown.
Different sizes of the enrichment zone are compared.
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Figure 5.1: Test case in 1d-2d. The elementwise L2 error in velocity is
displayed at refinement level 5. The green circle indicates the enrichment
radius Rw.
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A selected result is displayed in Figure 5.1. It includes 2 wells, per-
pendicular to the aquifer intersecting it near its center. The enrichment
zones overlap each other in the middle, resulting in very small velocity
error. The left subfigure corresponds to a problem with zero source term.
In the right subfigure, a sinusoidal source term prescribed, the error of
the singular part is inferior.

5.5.2 Test Cases in 1d-3d

In this section, a set of numerical tests of the 1d-3d model defined in
5.3 is provided. As in the 1d-2d case, the optimal convergence rate in
velocity L2 error is demonstrated, different sizes of the enrichment zone
are compared.
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Figure 5.2: Test case in 1d-3d. The elementwise L2 error in velocity is dis-
played at refinement level 5. The green cylinders indicate the enrichment
zone.

A selected result is displayed in Figure 5.2. It has the same setting as
the 1d-2d case in 5.5.1, it is however extruded to 3 dimension along the
z axis. Lower error can be seen in the enriched zone in the left subfigure,
the error of the singular part of the solution is inferior to the error of the
regular part in the right subfigure.
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Finally, a more complex problem is solved, including 10 wells of differ-
ent tilt inside of a rock block. A Dirichlet boundary condition is applied
on the sides and a zero normal flux boundary condition is set at the bases.
An analytical solution is not available in this case, the discrete solution
can be inspected qualitatively only, see the solution of velocity Figure 5.3.
The block is meshed regularly, the element size can be noticed along the
edges of the lower base. The refined solution in the vicinity of the wells
is due to the refined output mesh.

The water balance over the domain boundaries can be computed. The
relative difference between the flux into and out of the system is below
0.1 %. Thus, we can conclude, that the communication between the wells
and the block is well approximated in terms of the water balance.
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Figure 5.3: Magnitude of velocity in 10 wells problem. Ten wells are
represented symbolically by the blue tubes. The block is clipped so that
we can see inside.

30



6 Mesh Intersection Algorithms

In this chapter, the algorithms for intersections of incompatible meshes,
which are necessary to our reduced dimensional models, are discussed.
Not only the cases 1d-2d, 1d-3d, solved in previous chapters, but a gen-
eral approach also for cases 2d-3d and 2d-2d is considered. The motivation
comes from the future needs for the software Flow123d, to enable compu-
tations on incompatible meshes even for fractures. This includes a Mortar
like coupling method [23], further development of the XFEM model de-
fined in this thesis, Multilevel Monte Carlo [24] simulations using random
fracture generation or time evolving fracture network. The prerequisite
for any of these applications is a fast and robust algorithm for calculat-
ing intersections of the individual meshes. The content of this chapter
includes the results published in the author’s article [25].

6.1 Introduction to Mesh Intersection

The research on the currently available algorithms is provided in the intro-
duction. In particular the following are mentioned: the PANG algorithm
[26] for 2d-2d and 3d-3d intersections in mesh overlapping problems or 2d-
3d intersections algorithm [27] used in the implementation of the Nitche
method.

The suggested approach is based on the Plücker coordinates, further
developing the algorithm of Platis and Theoharis [28] for ray-tetrahedron
intersections. The algorithm is combined with the advancing front method
which allows reusing Plücker coordinates and their products among neigh-
boring elements and to reduce the number of arithmetic operations.

6.2 Element Intersections

In this section, the algorithms are presented for computing the intersection
of a pair of simplicial elements of a different dimension in a 3d ambient
space. The fundamental idea is to compute intersection of 1d-2d simplices
using the Plücker coordinates and to reduce all the other cases to this one.
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In general, an intersection can be a point, a line segment or a poly-
gon, called intersection polygon (IP) in common. IP is represented as
a list of points called intersection corners (IC). The information about
the topological position of IC is determined (IC in a vertex, side or face).

Plücker coordinates represent a line in a 3d space. The definition,
properties and the more general context from computational geometry
can be found e.g. in [29]. It is shown that using Plücker coordinates and
their permuted inner product, the relative position of a line and a triangle
in ambient 3d space can be determined.

Having computed the Plücker coordinates and all possible permuted
inner products in the line-triangle case, this data can be further used to
derive the barycentric coordinates of the actual IC. The formula is derived
in detail. Then the intersection algorithm for 1d-2d case is suggested,
providing also the topological position of the intersection.

Computation of the line-tetrahedron intersection uses the 1d-2d al-
gorithm for each pair line-face. The Plücker coordinates and permuted
inner products are computed only once and possibly reused. Each result
of 1d-2d algorithm is treated carefully to process the topological positions
correctly. Two ICs are returned at most.

In the intersection algorithm in triangle-tetrahedron case, 9 Plücker
coordinates (3 sides, 6 edges) and 18 permuted inner products are needed
to compute up to 12 side-face intersections and 6 edge-triangle intersec-
tions. The result is an n-side intersection polygon (IP), n ≤ 7. This
algorithm is much trickier to obtain correct topological positions of the
ICs and to be able to sort them at the end to form a polygon. The
algorithm is thoroughly described concerning all possible situations.

The intersection of two triangles uses up to 6 calls of the 1d-2d al-
gorithm for all side-triangle combinations. The algorithm again carefully
propagates the topological data from the 1d-2d cases, so that some com-
putations can be skipped. Up to 2 ICs may be found as a result.

6.3 Global Mesh Intersection Algorithm

A composed mesh is considered, containing a 3d mesh, that is called
a bulk mesh, and other lower dimensional meshes are called component
meshes. At first, all component-bulk mesh intersections are computed,
i.e. 1d-3d and 2d-3d. The algorithm includes two steps: finding the first
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non-empty element-element intersection (initiation) and prolongation of
the intersection using the advancing front tracing.

The search for the initial element-element intersection is accelerated
by two techniques. First, the axes align bounding boxes (AABB) are
computed for all elements, to provide fast comparison method to detect
candidate pairs of elements for the intersection. Second, the bounding
interval hierarchy (BIH) [30] can be build upon AABB, to speed up the
search.

An advancing front algorithm is suggested to extend the initial inter-
sections, 1d-3d or 2d-3d, looking for candidate pairs among the neigh-
boring component and bulk elements. There it is taken advantage of the
topological positions of ICs and the neighboring information on elements.
This algorithm runs until the component mesh is covered with all possible
bulk elements.

Considering a situation where the component meshes are in the interior
of the 3d bulk mesh, the component-bulk results are used for search for
candidate pairs in the component-component intersections. The storage
of the intersection data, which plays an important part here, is described.
On the other hand, component intersections in the exterior of the bulk
mesh must be searched via the initiation techniques.

6.4 Benchmarks

In this section, the suggested element-element algorithms are theoretically
compared with other available algorithms in terms of floating point op-
erations (FLOPs) count and two numerical benchmarks by the software
Flow123d are presented.

6.4.1 Theoretical Comparison

Three algorithms for the line-triangle intersections are compared: Plücker
algorithm described in Section 6.2, the algorithm based on the plane clip-
ping due to Haines [31], and the minimum storage algorithm due to Möller
and Trumbore (MT) [32]. For the later two algorithms straightforward
modifications are considered to make them return a qualitatively same
output as our algorithms do.

The estimated numbers of FLOPs for all cases are summarized in Table
6.1. Algorithms based on the Plücker coordinates should be competitive
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algorithm 1d-2d 1d-3d 2d-3d

Plücker 92 198 426

Plücker (edge reuse) 45 138 264

Haines 51 177 469

Möller and Trumbore 42 168 756

Table 6.1: Raw number of FLOPs used by different intersection algo-
rithms. Second row contains the estimated effective number of FLOPs
per intersection, accounting for reusing the computed Plücker data over
neighboring elements, while assuming data on edges of 2d and 3d elements
are used twice (conservative).

with the state of the art algorithms in case of 1d-3d and 2d-3d intersec-
tions. The expected performance for the 1d-2d case seems to be poor,
however these intersections are computed after 1d-3d and 2d-3d, so the
Plücker coordinates may be reused. Similarly, better results are expected
in the remaining two intersection cases when the Plücker coordinates and
their products are reused by neighboring elements.

6.4.2 Global Mesh Intersections

Three variants of the suggested algorithms are compared on 2d-3d bench-
marks in this section. The first variant FS+AF uses a full search (FS)
over the bulk mesh, i.e. it uses only the unordered array of AABB of
elements, to get the initial pair for the advancing front algorithm (AF).
The second variant BIH+AF uses the BIH on top of AABB to accelerate
the initiation of the AF algorithm. The third variant BIH does not use
AF at all and relies on the search through BIH only.

The artificial case considers a composed mesh consisting of a cube and
two diagonal rectangular 2d meshes. A sequence of meshes is prepared
with an increasing number of elements. All three variants exhibit almost
linear time complexity in both the initiation and the intersection phase,
relatively to the number of bulk and component elements, respectively.
The FS+AF variant is the fastest one, in particular in its initiation phase.
the BIH variant is about two times slower than the BIH+AF variant
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during the intersection phase.
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Graph 6.1: Comparison of the algorithms on meshes of Bedřichov locality
– interior fractures on the left, extending fractures on the right.

Next, the performance of the intersection algorithms on a mesh of
a real locality in Bedřichov in the Jizera mountains is analyzed. Two
meshes are considered, one with 28 fractures in the interior of the bulk
mesh, the other with artificially extended fractures outside the bulk mesh.
The results for both meshes can be seen in Graph 6.1. In the first case,
FS+AF and BIH+AF algorithms are nearly twice as fast as BIH. Creating
the BIH in the BIH+AF variant pays off and the algorithm performs
better than the FS+AF variant. In the second case, a large blow up of
the FS+AF variant is caused by the exterior component elements The
better performance of both BIH and BIH+AF variants is evident in this
case.

Based on the benchmark results, the variant BIH+AF is recommended
for general usage, while the FS+AF might be more efficient when there
are few component meshes inside a bulk mesh. The algorithms are imple-
mented as a part of the software Flow123d and the results were published
in the article [25]. It is currently used in the experimental Mortar model
for flow and in the XFEM models presented in Chapter 5.
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7 Conclusion

Based on the research of the related works and experience gained at the
conferences (in particular MAMERN VI ’15, X-DMS ’15-17 and CMWR
’18), we are convinced that we dedicated our efforts to a very interesting
and hot topic with wide range of applications. We are also not aware of
any closely connected work to this topic in the Czech Republic which puts
us in a pioneer position, in the Czech scientific environment at least.

In the first part of this work, a reduced dimension concept is described
and a model for coupling groundwater flow in non-planar 1d-2d and 1d-3d
domains intersecting each other is suggested. The drawbacks of several
approaches in FE approximation in such models are discussed leading to
the suggested solution: incompatible meshing of the domains and using
the XFEM to couple them back together and to improve FE approxima-
tion of arisen singularities by proper discrete space enrichments.

An extensive study of the currently available XFEM [14, 5] is provided
in Chapter 3 and singular enrichments are addressed in particular. Then
in Chapter 4, a model simulating pressure in a well-aquifer 1d-2d system,
inspired by [2, 3], is created. Different types of enrichments are studied
and compared in terms of convergence rate, linear system conditioning
and sensitivity to mesh – singularity alignment. In the view of the nu-
merical results, the SGFEM is found to be the most promising method
for singularity approximation in the model. Apart from that, several
implementation aspects of the XFEM are addressed: improved adaptive
quadrature rules for an accurate integration on enriched elements is sug-
gested, optimal enrichment zone for singular enrichments is investigated.
The model and methods is verified on a set of numerical test cases. The
content of these two chapters is partially summarized in the article [33].

Chapter 5 is dedicated to the XFEM application in a mixed problem
in order to extend the possibilities of the groundwater model in [6, 1].
The mixed-hybrid form is carefully derived for both non-planar 1d-2d
and 1d-3d case. A new singular SGFEM like enrichment of the standard
Raviart-Thomas finite elements is suggested and applied to the velocity
discrete space. The model is implemented as an experimental part of the
software Flow123d and a set of numerical tests is provided. Since velocity
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is important in the attached processes (e.g. transport), a stress is put on
the velocity precision and the velocity convergence rate is traced. The
optimal order of convergence is observed in both 1d-2d and 1d-3d tests,
which included single and multiple wells, overlapping enrichment zones
and non-zero source prescribed.

The difficulty of the suggested vector enrichment is that it shares a sin-
gle degree of freedom per singularity over its whole enrichment zone. This
is a source of two problems. First, the system matrix has some non-
sparse rows, which can then lead to loosing the sparsity when applying
a preconditioner based on elimination. Second, any heterogeneity, e.g. in
conductivity, inside the enrichment zone cannot be captured by a single
singular enrichment function. We tried to find proper elementwise enrich-
ment functions, similarly to the ones used in the pressure model, however
we struggled with the hybridized form, where such enrichment functions
must be accompanied by some corresponding Lagrange multipliers. So
far we were unsuccessful in performing a numerical test of the inf-sup
stability of the mixed-hybrid form, this problem had to be left open. We
intend to further study the suggested elementwise enrichment functions
and the inf-sup test in the mixed problem without hybridization, however
such model is not available in Flow123d yet.

A necessary prerequisite for computations on incompatible meshes is
the ability to determine the intersections of the different meshed domains.
In Chapter 6 a fast and robust algorithm for computing such intersections
on simplicial meshes is developed. Although only the non-planar 1d-2d
and 1d-3d cases are necessary in the singular models, the algorithms are
extended also to higher dimensions, namely 2d-2d, 2d-3d. New models
in these cases are in focus of our future work and further development of
the software Flow123d. The properties of the Plücker coordinates [28, 29]
are exploited in the element-element intersection algorithms which pro-
vide not only the coordinates but also additional topological information.
This is then used in the global mesh intersection algorithms together with
other modern techniques such as BIH of axes aligned bounding boxes and
advancing front tracing. The suggested algorithms are shown to be com-
petitive to other works [32, 31]. The global mesh intersection algorithms
are tested in Flow123d on an artificial and a real case benchmarks and
they exhibit linear time complexity. The results are summarized in [25].
Possible further improvements include a deeper study on the precision of
the used geometric predicates, e.g. regarding the adaptivity in [34], and
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thorough code optimization in Flow123d.
The work was also consulted during the author’s traineeship at Tech-

nical University in Munich at the Department of Numerical Mathematics
lead by Prof. Barbara Wohlmuth. Mainly the theoretical aspects of the
work and new ideas were discussed. We got also familiarized with a differ-
ent approach for problems with Dirac delta sources [12, 13] as a coupling
method for inclusions.

The goals of this thesis as set in the introduction were fulfilled to
a great extent. We studied the XFEM intensively and researched its
usage in singular problems. Apart from the created pressure model, we
managed to suggest a new velocity enrichment in the mixed-hybrid form
and implement a working model in Flow123d. The model was derived and
formulated in detail. A lot of technical work was done while preparing
all the building blocks for the XFEM in the software. Eventually, we left
several open issues which were addressed above.

As we already pointed out, the future work may concern a study of
the vector enrichments in the mixed form. Extensions of the discretization
for 1d objects that are not straight might be of interest. A specialized
iterative method can be suggested in order to solve the linear algebraic
system efficiently, including a proper preconditioner. Finally, some pro-
cesses attached to the groundwater model may be considered using the
velocity solution. These processes, namely transport of substances, poroe-
lasticity or heat transfer, then may require similar kind of enrichment for
scalar/vector quantities of interest.
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2019).
URL: http://flow123d.github.com

[2] R. Gracie, J. R. Craig, Modelling well leakage in multilayer aquifer systems
using the extended finite element method, Finite Elements in Analysis and
Design 46 (6) (2010) pp. 504–513. ISSN 0168-874X. doi:10.1016/j.finel.
2010.01.006.

[3] J. R. Craig, R. Gracie, Using the extended finite element method for
simulation of transient well leakage in multilayer aquifers, Advances in
Water Resources 34 (9) (2011) pp. 1207–1214. ISSN 0309-1708. doi:
10.1016/j.advwatres.2011.04.004.

[4] T.-P. Fries, A corrected XFEM approximation without problems in blend-
ing elements, International Journal for Numerical Methods in Engineering
75 (5) (2008) pp. 503–532. ISSN 1097-0207. doi:10.1002/nme.2259.
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