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Abstract

Increasing the share of renewable electricity generation is a characteristic feature
of modern energy systems. Renewable electricity generation has important envi-
ronmental benefits, however, it is also marked by significant stochasticity and its
large scale integration into power grid is not possible without new methods for con-
trol of electricity consumption, new energy storage technologies and communication
infrastructure. Thermostatically controlled loads represent a significant share of to-
tal electricity consumption and they are often tightly connected with large thermal
storage capacities. For these reasons they can be used for controlling electricity con-
sumption and cost effective energy storage. This motivates the focus of this thesis
on advanced control algorithms for thermostatically controlled loads.

Any control requires a suitable control signal. In this thesis, an indirect control
signal is used – the role of the control signal is played by variable electricity price.
This concept is considered in many pilot projects both in the USA and in the
EU. It has certain advantages: the customers can choose the preferred strategy
for responding to the needs of the grid, so their comfort is not compromised; also
there is no need to install significantly more complex interfaces for direct control
of the loads and monitoring of their states. However, the design of suitable control
algorithms for responding to variable prices is still a largely open problem. The
thesis focuses on two aspects of this problem.

The first part of the thesis considers the control of a single large thermostatically
controlled load that responds to the price signal. This load is described by a linear
time varying system and a local economic model predictive controller is designed
for it. This controller must account for the time varying dynamics of the controlled
load. By performing local economic optimization this controller helps to balance
supply and demand in the electricity grid. This part of the thesis was created
within the framework of H2020 SmartNet project and it considers one of the project
pilot demonstrations: heated swimming pool. The time varying character of the
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model of this pool is due to the changes of the heat transfer coefficient between
water and air depending on the wind speed.

The second part of the thesis focuses on smaller thermostatically controlled loads.
They are negligible individually, but they can play an important role if a larger pop-
ulation is aggregated. The structure of the proposed control system is hierarchical.
Economic model predictive controller in the upper level responds to varying elec-
tricity price and changes the temperature setpoints of the thermostats in the lower
level. The objective of the control system is the same as in the first part of the thesis:
the cost of the operation of this population is minimized and this helps to keep the
balance in the grid. However, the high number of the loads does not allow individual
modelling of each load in the model predictive controller and an aggregate model
had to be developed and tested. This model is non-linear and economic model pre-
dictive controller has to solve mixed integer non-linear optimization problem. The
effectiveness of the proposed control strategy was demonstrated by simulation.

Keywords: Smart Grids, Demand Response, Real Time Pricing, Economic
model predictive control, Non-linear model predictive control, Modelling of aggre-
gated thermostatically controlled loads, Linear parameter-varying systems
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1 Introduction

Current national energy policies tend to replace fossil fuelled power plants with
energy production from Renewable Energy Sources (RESs) in order to create more
efficient and economic energy system as well as to deal with existing environmental
problems [1–3]. In the European Union, the share of renewable energy production
has been growing considerably in the past years [4].

There are several features specific to utilizing RES related to harvesting, trans-
mitting, storing and consuming renewable energy. Firstly, RES are distributed, e.g.
wind turbines, photovoltaic solar panels, and solar thermal units of different sizes
that can be located almost anywhere and belong to anyone from government to an
individual person. On one hand, it allows to reduce the transmitting capacity of
the grid, because the energy source can be located closer to the consumers. On the
other hand, it requires redesigning the energy system, because conventionally most
of the energy systems are centralized. Secondly, renewable energy production has
intermittent and uncontrollable nature that necessitates developing new advanced
control and optimization methods, which are applied on the both production and
consumption sides, for maintaining power balance in the grid.

Dealing with these issues imply utilizing advanced control and optimization algo-
rithms (e.g. Model Predictive Control (MPC)) in Demand Side Management (DSM)
for scheduling fossil-fuel electricity production, managing energy storage, predicting
the overall energy consumption, and coordinating flexible portion of the loads (e.g.
Thermostatically Controlled Loads (TCLs)). Thus, a variety of related problems
arise: developing prediction models for the system components (renewable produc-
tion units, flexible loads, and storage units) as well as models predicting overall
production and consumption; defining the control hierarchy and algorithms that
would coordinate all the components at different scales.
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1.1 Smart energy grids

The concepts of Smart Grid (SG) and Virtual Power Plant (VPP) were introduced
in order to deal with Distributed Energy Resources (DERs). SG aims to provide
the enchantment to ensure high levels of security, quality, reliability, and availability
of electric power [5]. VPP combines DERs, including RESs, to make it appear in
market as a single power plant.

Smart grid focuses on improving the process of delivering electrical energy from
suppliers to consumers involving usage of modern information and communication
technology. Advanced power electronic devices such as smart meters and energy
controllers provide possibility to gather information about producers and consumers
of electrical energy. These devices are used to maximize the transmitting ability
as well as to maintain the stable operation of the grids, intelligent control and self-
healing.

Virtual Power Plant (VPP) is a new concept dealing with generation and man-
agement of energy based on centralized control structure, which connects, controls,
and visualizes work of DERs, such as Combined Heat and Power (CHP) units, wind
farms, solar parks, and etc. as well as flexible power consumers and batteries [6, 7].

Introducing VPP will allow more power to be generated locally and shared by
participants without needs to transmit it over long distances at high voltage. Con-
sumers will not be passive members of electrical grid anymore. They will be able
to influence the power network and become prosumers: consumers that are capa-
ble of producing electrical energy [8]. Using distributed generators will allow them
to decide whether it is more profitable to buy or to produce the electrical energy.
Moreover, it will increase the stability of the power network in the regions where
blackouts are usual or possible to occur.

1.2 Demand side management

Demand Side Management (DSM) aims to increase flexibility and efficiency of
already existing power distribution infrastructure, which is conventionally over-
designed to cope with maximum expected load peaks [9, 10].

There are two control methods applied by DSM [11]. The first method is the
indirect load control. The power consumption is controlled from the customer side
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taking into account the real-time pricing or frequency deviation in power system.
The second method is the Direct Load Control (DLC). In this case, the power
consumption is controlled directly by a system operator. This method provides
more precise adjusting of the consumption, but the customer’s needs and preferences
might be violated.

Although Direct Load Control (DLC) generally provides better ability to control
the consumption, the price based (indirect) method has some advantages: there is no
need to develop bi-directional communication interface and share knowledge about
the end-user’s environment; it is a decentralized structure with common control sig-
nal (electricity price) where each customer decides how to respond, so the customer’s
preferences are not compromised and the system itself is simpler; it clearly moti-
vates customers to participate in DSM by providing economical benefits. If indirect
method is used, consumer price of electricity varies dynamically in the real time.
This varying price signal can either follow the prices of the short-term wholesale
electricity markets or it can be constructed by the electricity retailer in any other
suitable way [12–15].

Figure 1.1 contains an example of an energy system with varying electricity price,
which is seen as a potential energy system in Denmark [16, 17]. Price Generator
is used in the position of consumption controller and generates the optimal electricity
price profile to meet the reference consumption taking into account the estimated
response.

Price Generator
(controller)

Price-responsive
consumption 

Price-response 
estimator

Price

Model parameters

Consumption
reference

Aggregated
consumption

Figure 1.1: Energy system with varying electricity price signal
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It is expected that the consumers will adjust their consumption to variable price
in order to reduce payments for the electricity, whereas it will positively influence
the grid stability (the consumption reference is generated taking into account the
grid’s needs).

Practical realization of such energy system requires many open questions to be
answered. For instance, defining algorithms for generating consumption reference
and price generator signals, developing the models for aggregate demand response
approximation (price-response estimator), and etc.

In the thesis the main attention is to the flexible consumption side (price-
responsive consumption). It is important to propose such optimal control strategies
that will motivate the consumers to become members of the presented energy sys-
tem. Ideally, the electricity payments should decrease whereas the customer comfort
should not be violated. It is widely accepted in the literature that Model Predictive
Control (MPC) is a well-suited method for this class of control problems [18–23].

1.3 Model Predictive Control in Smart grids
Model Predictive Control (MPC) is an advanced control technique (more advanced
than classical PID controller) that has had a great success in many application in the
recent decades. There are several advantages that led to that [24,25]. Firstly, MPC
allows operation near equipment and safety constraints, in the most cases it provides
the most efficient or the most profitable regimes. Secondly, the method takes into
account internal interaction within the controlled process using a model. In general,
it is preferable to use a linear model; however, there are modifications with non-
linear models [26, 27]. Thirdly, the basic formulation can easily be extended to
multivariable plants with almost no modifications. Moreover, the modern processors
allow to solve such optimization problems in real time.

In modern energy systems, MPC helps to maintains the power balance between
production and consumption of the electrical energy [18, 19, 22], which is required
due to uncontrollable nature of Renewable Energy Sources (RESs) discussed earlier.

The dynamics models of common energy system components such as electrical
vehicles, heating or refrigerating systems, wind farms, solar collectors and heat stor-
age tanks, are known [28–32], which makes MPC even more attractive for these
control tasks.

This thesis is focused mainly on optimization of the consumption side, partic-
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ularly Thermostatically Controlled Loads (TCLs), in order to match the current
energy production forecast.

1.4 Potential of TCLs in future energy systems
Thermostatically Controlled Loads (TCLs) is a common class of energy loads that
maintain temperature regulation. It is widely accepted that TCLs have enormous
potential for regulation services provision due to its inherent thermal capacitance,
ability of being turned OFF/ON for some period of time without compromising cus-
tomer’s comfort, and widely-spread usage [11,33–37]. For example, TCLs represent
about 20% of total electrical consumption in the United States [38, 39]. Moreover,
it has been shown that aggregate control of TCLs is more cost-effective than other
energy storage technologies such as flywheels, Li-ion, advanced lead acid, and Zinc
Bromide batteries [40]. These facts make TCLs an attractive target for DSM.

There are many proposed MPC-based control systems for utilizing TCLs in
DSM [18–23]. However, in these examples the scope of optimization is limited
either to a single building, to relatively small groups of buildings, or to microgrids
with quite modest set of power generation and consumption devices. Consequently,
the appliances, generators etc. could be described by individual though simplified
dynamic models (in most cases Linear Parameter-Varying (LPV) models). MPC
is then formulated as a relatively simple linear or linear mixed integer program.
A part of this thesis deals with extending classical MPC approach to deal with
Linear Time Invariant (LTI) models.

Another approach is to focus on a large population of TCLs. Consequently it
is no longer possible to model each appliance by its individual model, but suitable
aggregate population model must be developed and used instead. Various models
describing aggregate demand of a population of TCLs have been presented in the
literature with its advantages and disadvantages [29, 32, 39, 41–44].

This work also deals with modifying bin state transition model (relatively accu-
rate aggregate model for TCL) [43] such that it can be used for indirect control of
TCLs. The original model provide relatively accurate demand response to a switch-
ing signal (direct load control), whereas the energy system considered in this thesis
assumes indirect (electricity price-based) load control.
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2 Objectives of the thesis

This thesis deals with developing advanced control algorithms for utilizing the poten-
tial of Thermostatically Controlled Loads (TCLs) in smart energy grid with variable
electricity price.

The focus is on the price-responsive consumer’s side, in particular on the optimal
control algorithms that can be applied on the consumer’s side, whereas the price
generation algorithms are out of the thesis scope. The main objective of the pro-
posed Economic Model Predictive Control (E-MPC) strategies is to minimize the
operational cost of the flexible loads, in particular TCLs, taking into account the
current electricity price and future electricity price profile.

The thesis is divided into two parts. The first part deals with optimizing energy
consumption of a system with a single relatively large TCL, which can be described
by a Linear Parameter-Varying (LPV) model. The corresponding objectives can be
summarized as follows:

• formulate an LPV model for E-MPC controller design;

• modify the E-MPC optimization problem to account variation of the model
parameters;

• verify the E-MPC control strategy.

The second part deals with aggregate control of a population of TCLs using
Economic Non-linear Model Predictive Control (E-NMPC). This task doesn’t only
require developing an appropriate optimal control algorithm, but also an aggregate
model describing demand response of the whole population. The corresponding
objectives can be summarized as follows:

• design a simulation model for verification of the control algorithm;

• develop an aggregate model of the TCLs population;

• design and verify the E-NMPC control strategy.
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3 E-MPC based on linear parameter-varying
model

Some systems with TCLs are better described by Linear Parameter-Varying (LPV)
rather than Linear Time Invariant (LTI) model because the model parameters might
depend on the environmental conditions. For example, Coefficient of Performance
(COP) usually depends on the ambient temperature; thermal conductivity and heat
transfer coefficients may depend on the wind speed; and some other parameters may
depend on the occupancy status in case of residential applications [45–47].

An example of such system is studied in the Danish Pilot, which is also a part of
the SmartNet [48] and the CITIES [49] projects. The aim of the Danish Pilot is to
explore the potential of aggregate control of summer houses with swimming pools
to be a flexible consumer and store energy harnessed from renewable energy sources.
These summer houses consume relatively high amount of energy for the swimming
pool temperature and humidity control. At the same time the swimming pools,
filled with water, have large thermal mass, which allows to shift and to schedule the
heating profile without compromising the occupants comfort in order to optimize
the energy consumption.

Classical Model Predictive Control (MPC) requires an LTI model describing
plant dynamics. In order to take into account possible variation of the plant model
parameters, an MPC based on an LPV model should be developed. This task was
divided into the following steps:

• formulate an LPV model of the swimming pool heating system (heat pump);

• formulate an optimal control strategy taking into account variation of the
model parameters (E-MPC for LPV model);

• verify the control algorithm (simulations).
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3.1 Model of swimming pool heating system
Figure 3.1 contains the structure of the swimming pool heating system. The pump
circulates the water in the system. The heat pump and the heat exchanger provide
hot water to the system. The heat pump is assumed to be controlled externally.

Heat exchanger Heat pumpPump

Swimming pool

 

Valve

 

Valve

Figure 3.1: Structure of swimming pool heating system

The proposed LTI model is developed under the following assumptions:

• evaporation is neglected, thus the volume of the water in the pool is constant;

• all heat losses are lumped to a single heat loss, which depends on the ambient
temperature and the wind speed;

• relationship between COP and Tamb is linear [50] within the considered range:

COP = 0.0952 · Tamb + 3.1. (3.1)

The model is presented below (more detailed derivation of the model is presented
in the full version of thesis):

ρw · Cw · Vp · Ṫp = αAp (Tamb − Tp) + V · Pnom · COP, (3.2a)

α = µ+ η · vw, (3.2b)

where Tp is the swimming pool temperature [◦C]; ρw is the water density [kg/m3];
Cw is the specific heat of water [kWh/(kg ·◦ C)]; Vp is the pool volume [m3]; Ap

is the pool area [m2]; Tamb is the ambient temperature [◦C]; Pnom is the nominal
electric power of the heat pump [kW ]; V is the state of the heating system; µ and
η are the coefficients defining the relationship between the wind speed (vw) and the
heat transfer coefficient α.
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3.2 E-MPC based on LPV model

This section presents economic MPC based on a Linear Parameter-Varying (LPV)
model and describes its transformation to the standard linear program. Note that
these results were published in 2017 and presented in [51].

Model 3.2 can be discretized and generalized assuming that any of the parameters
can vary as follows:

xk+1 = Ad(θk)xk +Bd(θk)uk + Ed(θk)dk (3.3a)

yk = Cd(θk)xk (3.3b)

Here, yk is the output vector; xk is the state vector; uk is the control vector; dk
is the measured disturbance; Ad, Bd, Ed and Cd are the state matrices; θk is the
vector of parameters influencing the state matrices.

3.2.1 Optimization problem

The objective of the economic MPC is to minimize operational cost of the system
taking into account input and output constraints [18]:

min
u

N−1∑
k=0

ckuk + ρvvk+1 (3.4a)

s.t. xk+1 = Ad(θk)xk +Bd(θk)uk + Ed(θk)dk (3.4b)

yk = Cd(θk)xk (3.4c)

ymin,k − vk ≤ yk ≤ ymax,k + vk (3.4d)

umin,k ≤ uk ≤ umax,k (3.4e)

Here, N is the prediction horizon; ck is the cost coefficients (e.g. electricity
price); vk is the slack variables relaxing the output constraints with corresponding
penalty cost ρv; ymin,k and ymax,k are the output constraints; umin,k and umax,k are
the input constraints.
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3.2.2 Corresponding linear program

Problem (3.4) can be converted to a standard linear optimization problem of the
following form:

min
x

fTx (3.5a)

s.t. Aineqx ≤ bineq (3.5b)

xmin ≤ x ≤ xmax (3.5c)

Here, f is the vector of cost coefficients; x is the vector of variables to be de-
termined; Aineq and bineq define the inequality constraints; xmin and xmax are the
minimum and maximum boundaries of x respectively.

The transformation from optimal problem (3.4) to optimal problem (3.5) is pre-
sented below. Table 3.1 contains corresponding notations. The transformation
is based on similar transformation for the case of the LTI model presented in [25,52]

Table 3.1: MPC for LPV model notations

Parameter Description

U = [u0 u1 ... uN−1]
T Vector of future inputs

Y = [y1 y2 ... yN ]
T Vector of predicted outputs

Umin = [umin,0 ... umin,N−1]
T Vector of min. input constraints

Umax = [umax,0 ... umax,N−1]
T Vector of max. input constraints

Ymin = [ymin,1 ... ymin,N ]
T Vector of min. output constraints

Ymax = [ymax,1 ... ymax,N ]
T Vector of max. output constraints

D = [d0 d1 ... dN−1]
T Vector of measured disturbances

Θ = [θ0 θ2 ... θN ]
T Vector of parameters

C = [c0 c1 ... cN−1]
T Vector of cost coefficients

V = [v0 v1 ... vN−1]
T Vector of slack variables

P = [ρv ρv ... ρv]
T Vector of penalty cost coefficients

Equations (3.6) and (3.7) demonstrate calculation of state and output vectors
predictions with given initial states x0, future control inputs U , and measured dis-
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turbances D. Where Ak = Ad(θk), Bk = Bd(θk), Ek = Ed(θk) and Ck = Cd(θk).

x1 = A0x0 +B0u0 + E0d0 (3.6a)

x2 = A1x1 +B1u1 + E1d1

= A1(A0x0 +B0u0 + E0d0) +B1u1 + E1d1

= A1A0x0 + A1B0u0 +B1u1 + A1E0d0 + E1d1

(3.6b)

x3 = A2x2 +B2u2 + E2d2

= A2(A1A0x0 + A1B0u0 +B1u1 + A1E0d0 + E1d1)+

+B2u2 + E2d2

= A2A1A0x0 + A2A1B0u0 + A2B1u1 +B2u2+

+ A2A1E0d0 + A2E1d1 + E2d2

(3.6c)

...

xk =
(∏k−1

i=0 Ai

)
x0 +

∑k−1
i=0

(∏i+1
j=k−1Aj

)
Biui+

+
∑k−1

i=0

(∏i+1
j=k−1Aj

)
Eidi

(3.6d)

yk = Ck

(∏k−1
i=0 Ai

)
x0 + Ck

∑k−1
i=0

(∏i+1
j=k−1Aj

)
Biui+

+Ck

∑k−1
i=0

(∏i+1
j=k−1Aj

)
Eidi

(3.7)


y1

y2

...

yN


︸ ︷︷ ︸

Y

=


O1

O2

...

ON


︸ ︷︷ ︸

Φ

x0 +


Hu,1,0 0 ... 0

Hu,2,0 Hu,2,1 ... 0

... ... ... ...

Hu,N,0 Hu,N,1 ... Hu,N,N−1


︸ ︷︷ ︸

Γu


u0

u1

...

uN−1


︸ ︷︷ ︸

U

+


Hd,1,0 0 ... 0

Hd,2,0 Hd,2,1 ... 0

... ... ... ...

Hd,N,0 Hd,N,1 ... Hd,N,N−1


︸ ︷︷ ︸

Γd


d0

d1

...

dN−1


︸ ︷︷ ︸

D

(3.8)

Output vector predictions (3.7) can be rewritten in a shorter form:

yk = Okx0 +
k−1∑
i=0

Hu,k,iui +
k−1∑
i=0

Hd,k,idi (3.9)
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Here Ok is the extended observability matrix:

Ok = Ck

(
k−1∏
i=0

Ai

)
(3.10)

Here Hu and Hd are the Markov parameters with respect to manipulated variable
and measured disturbance:

Hu,k,i = Ck

(
i+1∏

j=k−1

Aj

)
Bi (3.11a)

Hd,k,i = Ck

(
i+1∏

j=k−1

Aj

)
Ei (3.11b)

The predicted output vector Y is calculated using (3.9):

Y = Φx0 + ΓuU + ΓdD (3.12)

see equation (3.8) for detailed structures of matrices Φ, Γu, and Γd.
The input constraints are:

Umin ≤ U ≤ Umax (3.13)

The output constraints are:

Ymin − V ≤ Y ≤ Ymax + V (3.14)

Using (3.12), (3.14) can be rewritten as:

Ymin − V ≤ Φx0 + ΓuU + ΓdD ≤ Ymax + V (3.15a)

ΓuU − V ≤ Ymax − Φx0 − ΓdD (3.15b)

−ΓuU − V ≤ −Ymin + Φx0 + ΓdD (3.15c)

Finally, the parameters of the standard linear optimization problem (3.5) can be
found as following:

x =

[
U

V

]
(3.16a)
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f =

[
C

P

]
(3.16b)

Aineq =


Γu −I
−Γu −I
0 −I

 (3.16c)

bineq =


Ymax − Φx0 − ΓdD

−Ymin + Φx0 + ΓdD

0

 (3.16d)

xmin =

[
Umin

−∞

]
(3.16e)

xmax =

[
Umax

+∞

]
(3.16f)

Note that in some systems, including the swimming pool heating system
considered in Section 3, the manipulated variables can only have two states
(”OFF”/”ON”). The technique proposed in this section can still be applied for
E-MPC design by adding the following constrain: U ∈ {0, 1}. Then (3.5) becomes
a Mixed-Integer Linear Program (MILP) optimization problem.

3.3 Simulation results
This section contains simulation results that verify the proposed E-MPC based on
the LPV model. The control strategy is able to take into account the influence of the
environmental conditions (wind speed and ambient temperature) on the swimming
pool water mass thermodynamics. Also the occupancy status is taken into account
by adjusting the temperature constraints. The exact simulation parameters are
presented in the full version of thesis.

Figure 3.2 demonstrates the expected behavior: the system consumes the least
amount of energy possible (the controlled temperature is kept as close as possible
to the lower limit); the heating profile is scheduled such that the system is in ON
state during the times of lowest electricity prices.
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Figure 3.2: Simulation results: swimming pool heating system
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4 Simulation model of TCLs population

The second part of the thesis develops an economically optimal control system for
a population of Thermostatically Controlled Loads (TCLs) in energy system with
variable and predictable electricity price. The simulation model is developed to
verify the control system and control algorithm. The main requirement for the
simulation model is to provide accurate and realistic dynamics of the population,
which is achieved by simulating each unit individually. A population of electrical
space heaters is considered as a case study.

4.1 Model of an individual system with an electrical
space heater

An electrical space heater is a Thermostatically Controlled Load (TCL) with hys-
teresis control law: the load is turned ON when the controlled temperature is below
the lower hysteresis boundary and turned OFF when the controlled temperature
is above the higher hysteresis boundary. When turned ON, the unit consumes elec-
trical power, whereas in OFF state the consumption is equal to zero.

It is assumed that the temperature setpoint can be externally changed in order
to conform with the control system. This feature provides an interface for the higher
level E-MPC to indirectly influence the state of the unit.

The model of a single unit of the population is based on the model presented
in [53] and is formulated as follows:

dT (t)

dt
= − 1

CR
[T (t)− Tamb(t)−m(t)RP ], (4.1a)

m(t+) =


0 if T ≥ Tsp +∆Tsp +H

1 if T ≤ Tsp +∆Tsp −H

m(t) otherwise
(4.1b)

25



Here, T is the temperature controlled by the TCL [◦C]; C is the thermal capac-
itance [kWh/◦C] and R the is thermal resistance [◦C/kW ] of the heated area (e.g.
room); P is the electrical power [kW ]; Tamb is the ambient temperature [◦C]; m
∈ {0, 1} is the state of the TCL (OFF anf ON respectively); Tsp is the temperature
setpoint [◦C]; ∆Tsp is the temperature setpoint change [◦C]; H is the hysteresis band
of the thermostat [◦C].

Separated Tsp and ∆Tsp signals allow to have a single manipulated variable
(∆Tsp) to control all the units in the population, whereas each unit can have an
individual Tsp specified by the customer.

4.2 Model of population of electrical space heaters

The simulation model provides demand response of the whole population to the
temperature setpoint change (∆Tsp) and the ambient temperature (Tamb).

The population consist of n heating systems with electrical space heaters,
each unit of the population is described by an individual set of parameters θi =

[Ci, Ri, P i, Tsp,i, H, T0,i, m0,i] and simulated according to (4.1). Therefore the
model is highly accurate, but the complexity of the model depends on the number
of units in the population, that is why this model is not suitable for model based
control system design.

The thermal capacitances (Ci), the thermal resistances (Ri), and the electrical
powers (P i) of units are log-normally distributed with the corresponding means
(Cm, Rm, and Pm) and relative standard deviation (σrel). Log-normal distribution
guaranties that these parameters never take negative value, which corresponds to
the realistic scenario; whereas it is shown in [53] that the type of distribution doesn’t
have a significant impact on the demand response.

The hysteresis band of the thermostats (H) is the same for all units; the tem-
perature setpoints (Tsp,i) are evenly distributed within [Tlow + H, Tup − H], here
[Tlow, Tup] corresponds to the working temperature range of the population; the
initial temperatures (T0,i) are randomly chosen from [Tsp,i −H, Tsp,i +H].

The output of the model, the aggregate normalized demand of the whole popu-
lation, is given by the following ratio:

Pn(t) =

∑n
1 mi(t)P i∑n

1 P i

(4.2)
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4.3 Simulation results
This section presents simulation results of the whole population. Table 4.1 contains
values of the population parameters used for simulation and derived from typical
building stock in the Czech Republic [54]. The ambient temperature (Tamb) is con-
stant.

Table 4.1: Population parameters

Par. Value Units Description
Rm 3.4 ◦C/kW mean thermal resistance of the TCLs
Cm 7 kWh/◦C mean thermal capacitance of the TCLs
Pm 13.4 kW mean electrical power of the TCLs
σrel 0.2, 0.5 relative standard deviation
H 0.5 ◦C hysteresis band of the thermostat

Tlow 20 ◦C lower boundary of the working temp. range
Tup 24 ◦C upper boundary of the working temp. range
Tamb -5 ◦C ambient temperature

n 10000 number of units in the population

Figures 4.1 and 4.2 contain the simulation results. The population can either be
balanced (constant consumption) or imbalanced (changing consumption). When the
population is balanced the temperature controlled by the TCLs (T ,i) are distributed
such that ratio between ON and OFF units is a constant. Increasing/decreasing
the temperature setpoint change (∆Tsp) leads to the changing the ON/OFF cycles
of the units, therefore the disbalance represented by the oscillations in demand
response occurs. The figures also show that heterogeneity level (σrel) has a significant
influence on the dynamics of the population. Moreover, the demand response has
a non-linear nature which can be explained by non-linear nature of the hysteresis
control principle.
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Figure 4.1: Population: temperature setpoint change test, σrel = 0.2

Figure 4.2: Population: temperature setpoint change test, σrel = 0.5
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5 Aggregate model of the population

The simulation model presented in Chapter 4 is computationally too intensive to be
utilized for model-based control of a large population of TCLs. The existing aggre-
gate models cannot provide relatively accurate demand response of the population
of TCLs to a temperature setpoint change.

The aggregate model presented in this chapter is based on the bin state tran-
sition model presented in [43, 44, 55]. The original model describes evolution of
the units states and implies direct control of the population: the input signal of the
model allows to manipulate the loads states; such approach have some disadvantages
discussed earlier.

The proposed aggregate model is a non-linear modification of the bin state tran-
sition model which allows to control the population by changing the temperature
setpoint (indirectly influencing the load states). The model consists of two parts:
homogeneous and heterogeneous models.

5.1 Homogeneous model

The proposed non-linear modification of bin state transition model, unlike the orig-
inal model, approximates the demand response of the population to temperature
set-point change.

The original bin state transition model is used for approximating demand re-
sponse of a large population of TCLs assuming that their states can be directly
controlled. In the original formulation it is assumed that the population is homoge-
neous: the loads are defined by identical set of parameters θ = [C, R, P , Tsp, H].
The operating temperature range [Tlow Tup] is evenly divided into 2Nbin state bins,
see Figure 5.1. The idea of the model is to describe distribution and natural tran-
sition of the unis over these bins. Each bin is characterized by the corresponding
state, temperature range, and transitions rate to the next bin. Solid lines demon-
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strate transition of the unis under normal operational conditions: when the loads
are turned OFF the controlled temperature decreases and vice versa; when the
controlled temperature reaches one of the temperature limits [Tlow Tup] the cor-
responding loads change their state according to the hysteresis control law. Direct
manipulation of the loads states is shown by dashed lines. More detailed description
of bin state transition model can be found in [43, 44, 55].

OFF 

ON

T [°C]

1... ...

... ... 2Nbin

2

2Nbin‐1

Tup

Nbin Nbin‐1

Nbin+1 Nbin+2

Tlow

Figure 5.1: Uniform bin state transition model

The modified aggregate model implies extended operating temperature range,
which does not only include the dead-band of the units (defined by the hysteresis
width), but also some low- and high-temperature margins as shown in Figure 5.2.
This modification allows to influence the units states indirectly, by changing the
temperature setpoint. Note that the temperature axis is shifted by Tsp in order to
demonstrate the influence of the setpoint change on the model structure. Conse-
quently, the operating range of the modified model defines the acceptable temper-
ature setpoint change. Note that the results with non-linear aggregate model were
published in 2018 an presented in [56].

The operating range [∆Tlow, ∆Tup] is divided into three parts: low, normal, and
high temperatures. The normal temperature range [∆Tsp −H, ∆Tsp +H] (marked
by green colour) contains Nnorm OFF and Nnorm ON bins. The units corresponding
to these bins behave according to the original bin state transition model: the solid
thin lines correspond to heating or cooling process depending on the units states
according to (4.1a), the dashed thin lines correspond to changing the state when
a unit reachs one of the hysteresis boundaries according to (4.1b).

The low temperature range [∆Tlow, ∆Tsp −H] contains Nlow OFF and Nlow ON
bins. The units corresponding to the low OFF bins behave differently: they should
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Figure 5.2: Homogeneous aggregate model

immediately change their states which means to be transferred to the corresponding
ON bins (shown by thick solid lines). Such situation occurs after the setpoint has
been increased and some heaters are instantly switched ON by the thermostats with
accordance to (4.1b).

The high temperature range [∆Tsp+H, Tlow] contains Nhigh OFF and Nhigh ON
bins and implies the opposite situation: the temperature setpoint has been decreased
and some heaters are instantly switched OFF.

Homogeneous model (5.1) is given in a state-space form. Note that the state
matrix Ahom is not static: its structure depends on the temperature setpoint change.
In addition the model takes into account the ambient temperature according to
equations (5.6) and (5.7).

ẋ(t) = Ahom(∆Tsp(t), Tamb(t))x(t) (5.1a)

y(t) = Cbinx(t) (5.1b)

Structure of the state matrix depends on the number of bins in the low and high
temperature ranges. Elements corresponding to the natural transition (thin solid
lines, i ∈ [1 ... Nhigh +Nnorm − 1, Nbin + 1 ... Nbin +Nlow +Nnorm]):

Ahom,i,i = −ri (5.2a)

Ahom,i+1,i = ri (5.2b)

Switching (thin dashed lines, i ∈ {Nhigh +Nnorm, Nbin +Nlow +Nnorm}:

Ahom,i,i = −ri (5.3a)

Ahom,2Nbin+1−i,i = ri (5.3b)
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Forced switching (thick solid lines, i ∈ [Nhigh + Nnorm + 1 ... Nbin, Nbin +

Nlow +Nnorm + 1 ... 2Nbin]:

Ahom,i,i = −rsw (5.4a)

Ahom,2Nbin+1−i,i = rsw (5.4b)

The rates are calculated taking into account the times it takes to heat or cool
the controlled temperature withing the corresponding bin limits:

ri =
1

ti
(5.5)

The times for the OFF-bins (i ∈ [1...Nbin]) are calculated as:

ti = −RCln
(
Ti,up − Tamb

Ti,low − Tamb

)
(5.6a)

Ti,low = Tup − (i− 1)∆Tbin (5.6b)

Ti,up = Tup − i ·∆Tbin (5.6c)

The times for the ON-bins (i ∈ [Nbin + 1 ... 2Nbin]) are calculated as:

ti = −RCln
(
Ti,low − Tamb − PR

Ti,up − Tamb − PR

)
(5.7a)

Ti,low = Tlow − (i−Nbin − 1)∆Tbin (5.7b)

Ti,up = Tlow − (i−Nbin)∆Tbin (5.7c)

Here, [Ti,low Ti,up] defines the temperature range of the i-th bin, Tamb is the
ambient temperature, ∆Tbin is the temperature range corresponding to one bin:

∆Tbin =
∆Tup −∆Tlow

Nbin

(5.8)

The modification introduces a new transition rate, which is not used in the
original model and called forced switching rate (shown by the thick solid lines). It
is the same for all bins and should meet the following requirement:

rsw ≫ max (ri) , i ∈ [1...2Nbin] (5.9)

The number of bins corresponding to the normal temperature (2Nnorm) range
does not depend on the temperature setpoint change:

Nnorm =
2H

∆Tbin
(5.10)
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Whereas the number of bins corresponding to the low/high temperature ranges
(2Nlow and 2Nhigh respectively) depends on the temperature setpoint change:

Nlow =
∆Tlow −∆Tsp +H

Nbin

(5.11a)

Nhigh =
∆Tsp +H −∆Tup

Nbin

(5.11b)

5.2 Heterogeneous model
In real population there are no identical units, each of them is defined by the unique
set of parameters θ(i), i ∈ [1...n]. The heterogeneous model deals with this variation
of the parameters applying the k-means clustering method [29, 39, 57]. The popu-
lation of n units is divided into into nc clusters, each cluster is associated with the
corresponding set of parameters θi and the number of units belonging to this cluster
ni, such that n = sum(ni), i ∈ [1...nc].

The heterogeneous model is a combination of nc homogeneous models defined in
the previous section:

Ẋ(t) = A(∆Tsp(t), Tamb(t))X(t) (5.12a)

Y (t) = CaggX(t) (5.12b)

Here, A ∈ R2ncNbin×2ncNbin is the state matrix of the aggregate model, Caggi ∈
R1×2ncNbin is the output matrix of the aggregate model, X i ∈ R2ncNbin×1 is the state
vector of the aggregate model, Y i is the output of the aggregate model, which is ap-
proximation of the normalized aggregate response of the heterogeneous population
(4.2).

The state vector X is given as:

X =


x1

x2

· · ·
xnc

 (5.13)

The state matrix A is given as:

A =


Ahom,1 02Nbin

· · · 02Nbin

02Nbin
Ahom,2 · · · 02Nbin

· · · · · · · · · · · ·
02Nbin

02Nbin
· · · Ahom,nc

 (5.14)
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The output matrix Cagg weighs the outputs of the homogeneous models in order
to normalize the output of the aggregate model to the maximum power consumption:

Cagg =
[
w1Cbin,1 w2Cbin,2 · · · wncCbin,nc

]
(5.15)

wi =
∑

j∈cluster i

P j/
n∑

j∈1

P j (5.16)

Here, Ahom,i, xi, and Cbin,i are the corresponding to the i-th cluster parameters of
homogeneous model, wi is the weight of the output of the homogeneous model of the
i-th cluster, 02Nbin

is the zero matrix of the corresponding dimension, sum(xi) = ni,
i ∈ [1...nc].

5.3 Simulation results
In this section the performance of the aggregate model (agg) presented in Section 5.2
is compared to the simulation model (sim) presented in Section 4.2 using the same
population parameters (Table 4.1).

Figures 5.3 and 5.4 demonstrate that the aggregate model is able to approximate
the dynamics of the population and to deal with heterogeneity. Since the complexity
of the model depends significantly on the number of clusters (nc) and the number of
bins (Nbin), these values were chosen as a trade-off between complexity and accuracy
of the aggregate model. Note, that higher variance of the population parameters or
higher σrel requires higher number of clusters and less sensitive to the number of
bins and vice versa.
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Figure 5.3: Simulation results: σrel = 0.2, nc = 4, Nbin = 80
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6 E-NMPC for the population of TCLs

This chapter develops a price-responsive control strategy for the population of TCLs
using the aggregate model developed in Chapter 5. Figure 6.1 contains structure of
the control system. The controller design is based on the idea of E-NMPC [27, 58,
59]. It is assumed that electricity price regularly changes and the electricity price
forecast is available at least one day ahead. The main objective of the controller
is to minimize operational cost of the whole population by shifting the electricity
consumption of the population to the low-price periods.

The TCLs ON/OFF states (which are directly linked to the electrical energy
consumption) are manipulated indirectly by changing temperature setpoints of the
units. The optimal temperature setpoint change signal generated by the controller
is constrained taking into account the customers comfort boundaries. Information
about the population (current values of the controlled temperature, the units states,
and total electrical power consumption) is used as a feedback signal.

Population state

Local 
thermostat

Electricity price forecast

E‐NMPC

Aggregate 
model

Weather forecast

Local 
thermostat

Local 
thermostat

ΔTsp

Figure 6.1: E-NMPC control system structure
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6.1 Continuous-time optimization problem

The control problem (6.1) is formulated as a constrained continuous-time opti-
mization problem, because the developed non-linear aggregate model in Chapter 5
is also presented in continuous-time domain. Moreover, Non-linear Model Predic-
tive Control (NMPC) is often formulated as a continuous-time optimization prob-
lem [27, 58, 59].

min
∆Tsp

ψ =

∫ tf

t0

p(t)Y (t)dt (6.1a)

s.t. Ẋ(t) = A(∆Tsp(t), Tamb(t))X(t) (6.1b)

Y (t) = CaggX(t) (6.1c)

X(t0) = X0 (6.1d)

∆Tlow ≤ ∆Tsp(t) ≤ ∆Tup (6.1e)
Tsp(t)

∆Tbin
∈ Z (6.1f)

t ∈ [t0 tf ] (6.1g)

Here, t0 is the current time; tf is the predictive horizon; p is the normalized
electricity price forecast; Y is the predicted normalized electrical consumption by
the whole population; ∆Tlow, ∆Tup correspond to the comfort constraints; X0 is the
initial state vector of the aggregate model.

Cost function (6.1a) represents predicted normalized operational cost of the pop-
ulation for given ∆Tsp profile. Aggregate model described by (6.1b) and (6.1c) is the
model defined in Section 5.2 used for calculating the normalized demand predictions.

6.2 Continuous-discrete-time optimization problem

The solution of optimization problem (6.1) is infinite-dimensional. Therefore, it
is needed to be converted into a finite-dimensional continuous-discrete-time problem
by approximating the input and disturbance profiles by corresponding piece-wise
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constant profiles:

∆Tsp,k = ∆Tsp(t) tk ≤ t ≤ tk+1 (6.2a)

Tamb,k = Tamb(t) tk ≤ t ≤ tk+1 (6.2b)

pk = p(t) tk ≤ t ≤ tk+1 (6.2c)

Consequently the resulting continuous-discrete-time optimization problem
is given as:

min
∆Tsp

ψ =
N∑
k=1

∫ tk+1

tk

pkY (t)dt (6.3a)

s.t. Ẋ i(t) = A(∆Tsp,k, Tamb,k)X(t) (6.3b)

Y (t) = CaggX(t) (6.3c)

X(t0) = X0 (6.3d)

∆Tlow ≤ ∆Tsp,k ≤ ∆Tup (6.3e)
∆Tsp,k
∆Tbin

∈ Z (6.3f)

t ∈ [t0 tf ] (6.3g)

k ∈ [0 N ] (6.3h)

The predictive horizon [t0 tf ] is divided into N steps with sampling time ts.
The solution of problem (6.3) is the optimal profile of temperature setpoint

changes:
uopt(t0) = [u0, u1, ..., uN−1]

T , uopt(t0) ∈ RN×1 (6.4)

At each step the first entry of the profile is implemented on the process and kept
during the following sampling time.

The obtained optimization problems is solved using the gradient descent method,
more details are presented in the full version of the thesis.

6.3 Simulation results

Two different scenarios were simulated in order to verify the aggregate model and
E-NMPC algorithm. First, 24 hours scenario was simulated: the algorithm aims to
minimize the operational cost of the whole population for the given electricity price
and ambient temperature profiles. Table 6.1 contains parameters of the aggregate
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Table 6.1: Aggregate model and controller parameters

Par. Value Units Description
σrel 0.2 Relative standard deviation

∆Tlow -2 °C Lower limit on temperature setpoint change
∆Tup 2 °C Upper limit on temperature setpoint change
nc 4 Number of clusters

Nbin 80 Number of bins
ts 1 hour Sampling time of the controller
N 12 Predictive horizon

∆Tbin 0.5 °C Minimum increment of setpoint change

model and the controller. Figure 6.2 contains the obtained simulation results: higher
electricity price corresponds to the lower energy consumption and vice versa; the
setpoint change tends to the lower limit which corresponds to the economically
optimal operating regime. Moreover, the algorithm overheats the population during
low-price periods in order to reduce the consumption during high-price periods.

Secondly, two energy saving strategies and zero temperature setpoint change
strategy (∆Tsp = 0, which basically means that there is no external influence on the
population) were compared in order to demonstrate the performance of the designed
E-NMPC control system. The first strategy is the smart energy saving (smart) which
implies that the optimal temperature setpoint change is provided by the E-NMPC.
The second is the thrifty energy saving (thrifty) which implies that the temperature
setpoint change is set equal to the lower limit (∆Tsp = ∆Tlow).

Figure 6.3 contains the obtained simulation results: the normalized operational
cost of the smart and thrifty strategies are always less than the operational cost
of the zero temperature setpoint change strategy. Moreover, after sometime the
operational cost of the smart strategy is always less than the operational cost of the
thrifty strategy. Whereas the temperature deviation of the smart strategy is closer
to zero which means that the customer comfort is less compromised.

In the thesis it is also demonstrated that the temperature setpoint changes
boundaries (∆Tlow and ∆Tlow) define the payment reduction, which can be up to 20%
at ∆Tlow = −4°C, ∆Tup = 4°C. Moreover, it is demonstrated that the optimization
algorithm can be run in real time.
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The summary

This thesis presents a study about utilizing high potential of Thermostatically Con-
trolled Loads (TCLs) for providing regulation reserve in Smart Energy Grids using
advanced control techniques. There are two main questions addressed in the work.
First, developing a Model Predictive Control (MPC) based on a Linear Parameter-
Varying (LPV) model for optimizing energy consumption of a system with TCL.
Second, indirect control of a large population of systems with TCLs in energy grid
with variable electricity price. According to the concept of energy system with vari-
able electricity price, the proposed economic control strategies are assumed to be
applied on the customer side, so-called price responsive consumers. The main objec-
tive of the control strategies is to minimize operational cost of either a single unit or
the whole population, taking into account forecasted electricity price change which
consequently stabilizes the energy system.

The first part of the thesis presents the detailed description of the Economic
Model Predictive Control (E-MPC) based on an LPV model. The method requires
the variables influencing the model parameters to be known for prediction horizon
at each sampling time. Thus, it is able to predict the influence of the parameters
variation on the system dynamics.

The modified method was verified by developing control system for a swimming
pool heating system described by an LPV model. The parameters of the model vary
depending on the wind speed and ambient temperature that can be predicted. The
simulation results demonstrate that the presented method can handle the parameters
variation and that the energy consumption is shifted to the low-price periods, which
corresponds to the economically optimal regime.

The second part of the thesis deals with aggregate control of a relatively large
population of TCLs. A new model, based on non-linear modification of bin state
transition model, for aggregate demand response approximation is proposed. The
modification provides accurate aggregate response of the population of TCLs to
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temperature setpoint change signal, which indirectly influences the states of the
loads. In the original model, the control strategy generating the switching signal
should ensure that the customer comfort is not compromised besides optimizing the
aggregate consumption. Whereas, the proposed approach lets the local thermostats
to deal with the customers comfort which can be easily managed by limiting the
temperature setpoint change, thus reducing the complexity of the control system.

There are several key advantages of the proposed aggregate model that are im-
portant for model-based control system design. Firstly, the model is relatively accu-
rate compared to the other models providing aggregate response to the temperature
setpoint change. High accuracy is achieved by reusing the idea of original bin state
transition model, which implicitly tracks the state of each load in the population.
Secondly, the model deals with different levels of heterogeneity of the population,
which is verified through simulations. Thirdly, the complexity of the model does
not depend on the number of units in the population, because it does not influence
the structure or order of the model.

The proposed model was used for formulating the price-responsive control strat-
egy, based on the means of E-MPC, which coordinates the population of TCLs. The
controller employs the developed aggregate model for predicting demand response of
the population. Taking into account the dynamics of the population allows to better
schedule the temperature setpoints for the loads compared to the earlier proposed
strategies where the temperature setpoint is defined as a linear function of the elec-
tricity price. Since the model is non-linear, the optimization problem is non-linear
as well and solved using gradient and adjoint sensitivity analysis methods.

Simulation results demonstrate effectiveness of the proposed control strategy.
Firstly, it allows to reduce the operational cost of the whole population up to 20%.
The reduction depends on the specified temperature setpoint change limits; in other
words, it allows the customer to find a compromise between reducing the electricity
payments and their comfort. Secondly, the proposed optimal regime is more efficient
than setting the temperature setpoint equal to the lower limit: the operational cost
is lower, the customer comfort is less compromised. Thirdly, the computation time
analysis demonstrates that the algorithm can run in real time. Moreover, there
is a margin that allows to increase the population size and/or run the algorithms
on microcontroller units or programmable logical controllers.
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