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Abstract 
Two-dimensional flow field measurement allows us to obtain detailed information 

about the processes inside the continuous casting mould. This is very important because 

the flow phenomena in the mould are complex, and they significantly affect the steel 

quality. For this reason, control based on two-dimensional flow monitoring has a great 

potential to achieve substantial improvement over the conventional continuous casting 

control. This conventional control relies on single-point measurements of selected scalar 

variables; typically, it is limited to mould level control. Two-dimensional flow field 

measurement provides large amounts of measurement data distributed within the whole 

cross-section of the mould. Such data can be obtained using process tomography or other 

sensors with similar distributed measurement capacity.  

An experimental setup of the continuous casting process called Mini-LIMMCAST 

located in Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, is used 

for this thesis. The mini-LIMMCAST facility is a small-scale physical model of a 

continuous caster working with a eutectic GaInSn alloy at room temperature. This thesis 

examines two alternatives of flow measurement sensors: Ultrasound Doppler Velocimetry 

(UDV) and Contactless Inductive Flow Tomography (CIFT). Both sensor variants can 

obtain information on the velocity profile in the mould. 

Available literature sporadically mentions the use of tomographic or similar sensors for 

real-time feedback control of various processes. However, the field of tomography-based 

control is still very young. Therefore, this thesis explores various approaches for utilizing 

the large amounts of data such sensors provide for automatic control. Generally, model-

based approaches were preferred for the design of controllers whose objective is to achieve 

optimal flow patterns in the mould.   

Two approaches were considered to create the process model needed for model-based 

control: a spatially discretized version of a model based on partial differential equations 

and computational fluid dynamics and a model obtained using system identification 

methods. In the end, system identification proved to be more fruitful for the aim of creating 

the model-based controller. Specific features of the flow were parametrized to obtain the 

needed controlled variables and outputs of identified models. These features are mainly 

related to the exiting jet angle and the meniscus velocity. The manipulated variables 

considered are electromagnetic brake current and stopper rod position. Model predictive 

control in several versions was used as the main control approach, and the results of 

simulation experiments demonstrate that the model predictive controller can control the 

flow and achieve the optimum flow structures in the mould using UDV. CIFT 

measurements can provide similar velocity profiles. However, further technical 

developments in the CIFT sensor signal processing, such as compensating for the effects 
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of the strong and time-varying magnetic field of the electromagnetic brake on CIFT 

measurements, are necessary if this sensor is to be used for closed-loop control. 

  



 
 

4 

 

Abstrakt 
Za pomoci dvourozměrného měření pole proudění v krystalizátoru zařízení pro plynulé 

lití oceli lze získat podrobnou informaci o procesech, které tam probíhají. Tato informace 

je velmi důležitá, neboť složitá struktura proudění v krystalizátoru výrazným způsobem 

ovlivňuje kvalitu lité oceli. Z tohoto důvodu má zpětnovazební řízení založené na 

takovémto dvourozměrném měření velký potenciál k tomu, aby dosáhlo výrazného 

zlepšení oproti obvyklým postupům řízení procesu plynulého lití. Tyto postupy totiž 

vycházejí pouze z bodového měření vybraných skalárních veličin a základní regulační 

smyčkou je obvykle řízení výšky hladiny v krystalizátoru.  

Dvourozměrné měření pole proudění v krystalizátoru poskytuje velké množství 

naměřených hodnot, které jsou rozloženy v celém průřezu krystalizátoru. Technicky může 

být takovéto měření realizováno pomocí průmyslové tomografie nebo jiných snímačů, 

které jsou podobně jako tomografie schopné snímat veličiny rozložené v rámci celého 

průřezu krystalizátoru. V práci je jako zdroj experimentálních dat použito zařízení Mini-

LIMMCAST provozované v Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Toto 

zařízení představuje malý model procesu plynulého lití pracující s eutektickou slitinou 

GaInSn, která umožňuje provádění experimentů za pokojové teploty. K měření 

dvourozměrného pole proudění v krystalizátoru jsou alternativně používány snímače 

založené na dvou různých principech: ultrazvuková dopplerovská velocimetrie 

(Ultrasound Doppler Velocimetry - UDV) a bezkontaktní induktivní průtoková tomografie 

(Contactless Inductive Flow Tomography - CIFT). Z obou variant snímačů lze získat 

informaci o rychlostním poli proudění v krystalizátoru.   

V dostupné literatuře lze najít občasné zmínky o použití průmyslových tomografických 

a obdobných snímačů pro zpětnovazební řízení různých procesů. Vcelku se však jedná o 

problematiku, jejíž výzkum je teprve v počátcích. V rámci práce bylo nutné se zabývat 

volbou a výzkumem vhodných metod automatického řízení, které umožňují využít 

rozsáhlé množství dat, které tyto snímače poskytují. Při návrhu metod řízení schopných 

zabezpečit, že proudění v krystalizátoru bude optimální z hlediska kvality výsledného 

produktu, byly v zásadě preferovány přístupy založené na modelu. 

Pro vytvoření modelu byly zvažovány dva základní přístupy: jednak prostorově 

diskretizovaná podoba modelu založeného na parciálních diferenciálních rovnicích a 

výpočetní dynamice tekutin a jednak model získaný postupy identifikace systémů. Tento 

druhý přístup se ukázal pro realizaci řízení založeného na modelu jako výrazně vhodnější. 

Z dat byly extrahovány vhodné numerické charakteristiky proudění v krystalizátoru (úhel 

proudění z ponorné trysky, rychlost proudění na hladině krystalizátoru a další), které bylo 

možné použít jako regulované veličiny a výstupy modelů získaných identifikací. Jako 

akční veličiny byly použity proud elektromagnetické brzdy a poloha regulovatelné výpusti 

z mezipánve. Hlavním přístupem k řízení v práci jsou různé verze prediktivního řízení 
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založeného na modelu. Ve spojení s UDV snímači byly navržené prediktivní regulátory 

schopné dosáhnout v simulačních experimentech stanoveného cíle řízení a zabezpečit 

optimální struktury proudění v krystalizátoru. CIFT snímače jsou v principu schopné 

poskytnout podobná data, nicméně pro jejich využití pro řízení v uzavřené smyčce bude 

nezbytný další výzkum v oblasti vyhodnocení signálu z těchto snímačů, kde je otevřeným 

problémem kompenzace vlivu silného proměnného magnetického pole elektromagnetické 

brzdy na signál z těchto snímačů. 
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1. Continuous Casting Process 

Continuous casting is a vital process that accounts for approximately 95 percent of 

global steel production [1]. Figure 1.1 depicts the main operation of a continuous caster in 

which liquid steel flows from the ladle to the tundish and then into the mould through a 

submerged entry nozzle (SEN). A stopper rod or a sliding gate regulates the flow rate [2]. 

A solid steel shell is formed in the water-cooled mould, and the partially solidified strand 

is transported on rolls and cooled by water sprays until it is completely solidified. 

Additionally, argon gas is injected into the SEN for several steel grades to prevent nozzle 

clogging and to float inclusions. If argon is used, the flow field in the mould must not 

obstruct the rise of bubbles to the free surface[3]–[5].  

The flow regime in the SEN and in the mould has a significant influence on the final 

product's quality. Issues such as clogging, turbulent flow, deep penetration of the jet, and 

slag entrapment have been shown to have a detrimental effect on the quality of the steel 

[4], [6]–[8]. The following sections will demonstrate that the challenge of controlling the 

continuous casting process is limited not only by the need to accurately model the process, 

but also by the sensors used in the process. This is where two-dimensional flow monitoring 

comes into play as these sensors are able provide us with richer data that can be utilized 

for control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1. Control of Continuous Caster 

1.1.1. Mould Level 

There is very little research on the use of  two-dimensional flow field measurements 

in continuous caster control; most of the current research is based on conventional sensors 

Figure 1.1. Schematic diagram of the continuous casting process [8] 
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and knowledge about the relationship between single measurable variables and product 

quality. The molten steel level in the mould has been shown to be one of the more important 

measurable variables [9]. To avoid potential defects, the fluctuation of this level must be 

reduced. As a result, most of the published papers related to the continuous casting control 

are focused on mould level control. An example can be seen in [10] where a PI controller 

with a variable gain and dither signal was implemented to control the mould level. The 

quality of steel level stabilization is shown to be considerably better when compared to the 

referential steel stream and using correction vibrating signal (dithering) is significantly 

better. Comparison between different control strategies including PI with high frequency 

dither, linear cascade controller and non-linear cascaded controller was conducted in [11]. 

Similarly to [10],  the authors also used a high frequency dither signal to deal with the non-

smooth nonlinearities of the signal. It was concluded that the nonlinear controller had a 

better performance as it required less control action but was able to dampen the mould level 

oscillations more efficiently.  

1.1.2. Dynamic Bulging Disturbance 

A common phenomenon that is being observed on the mould level is the bulging 

disturbance; bulging disturbance is mostly created by the supporting rollers that tend to 

push the liquid steel upward periodically [12]–[14]. Various control methodologies were 

proposed to compensate for this disturbance such as an adaptive sine estimator-based 

disturbance observer [15]. This observer was combined with a phase lead adaptive fuzzy 

controller. Both simulation and experimental results proved that the controller was able to 

reduce the bulging disturbance effect on the mould level. A similar attempt at suppressing 

the disturbance was done using a basic PI controller with an additional adaptive 

compensation that adapts the gain and prediction time to compensate for the disturbance 

[16].  Further attempts include a global observer that compensates for both bulging and the 

clogging/unclogging of the SEN [17]. In this case an online estimator tracks the effect of 

both external signals on the mould level. The control loop also uses the mould level, stopper 

position, and the flow rate as measurement signals. This allows for the fluctuations 

generated by the bulging to be drastically reduced. A similar approach is found in [18] 

where an observer is combined with a feed forward loop to reduce the mould level 

fluctuations.  

It becomes clear that the majority of the papers discussed above use variables 

measured at specific points of the process rather than taking into account what is going 

inside the process itself, especially when considering the flow structure inside the mould. 

Although the mould level provides some information on what is going on inside the mould, 

it provides limited information on the flow structures of the mould. Therefore, it becomes 

logically to consider sensors that would allow us to see into the mould and extract more 

information on the flow structures.  
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1.2. Control Based on Multidimensional Measurement 

Data 

There is growing interest towards utilizing multidimensional measurement data in 

industrial control. The advantage of these sensors is that they can provide information on 

what is happening inside the process itself, allowing us to control variables that were 

previously not attainable. As previously mentioned, control based on distributed sensing in 

the process of continuous casting is extremely limited, mainly these sensors are used for 

monitoring of the process rather implementation in a control loop [23]–[26]. In this section 

we will be concentrating on the general application of sensors based on multidimensional 

measurement data in controlling various processes and applications. 

 An example for control based on distributed parameter model is reported in [28]. 

The objective was to control the moisture content in a batch fluidised bed dryer. An electric 

capacitance tomography (ECT) was used to measure the moisture content. Also, in this 

case most aspects of the controlled plant behaviour were modelled using lumped parameter 

models based on mass and energy balances. This is then used to feed the permittivity model 

with the required moisture content variable. The permittivity model is a distributed 

parameter model that will calculate the permittivity distribution. The controller is then 

designed to keep the distributed permittivity around a desired shape using optimal control 

tools. This approach, where distributed parameter modelling is used just to describe those 

aspects of the plant behaviour whose distributed parameter modelling is essential while the 

rest is modelled using lumped parameters, seems to be generally promising as such models 

can be tractable analytically and suitable for use in the context of model-based control.  

Furthermore, in [29] the author proposes a feedback control system based on 

Electrical Impedance Tomography (EIT) designed to regulate the concentration 

distribution of a substance in a fluid flowing through a pipe. The reconstruction algorithm 

allows for state predictions given by the evolution model, this is updated with the 

information provided by the measurements. A Linear Quadratic Gaussian (LQG) controller 

was applied using impedance tomographic measurements. The optimal values for the 

control input u are obtained by minimizing the quadratic cost function. Numerical 

simulations show that the control system was successful at obtaining the desired 

concentration on the output boundary. Furthermore, the state estimation and control 

strategies were shown to be relatively tolerant to misspecification of variables such as the 

velocity field which is important when it comes to more complex flows such as turbulent 

and multiphase flows. 

1.3. Modelling in Continuous Casting  

Computational Fluid Dynamics (CFD) methods such as Finite-difference 

modelling has been proven to produce reliable mathematical models that are able to 
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describe the interactions that occur in the continuous casting process. These models allow 

us to use model-based controllers such as Model Predictive Control (MPC) in order to 

achieve the necessary control objectives. However, due to the complexity of the whole 

process, it is not possible to model the entire process all together, instead the different 

phenomena are uncoupled, and assumptions are made to model them in isolation.  

1.3.1. Electromagnetic Actuators 

Due to the importance of the fluid flow in the mould in improving steel cleanliness, 

it has become common practice to use electromagnetic actuators to somewhat control the 

flow in the mould. These actuators can be classified under the terms electromagnetic 

stirrers and electromagnetic brakes (EMBr) [30]–[32]. The concept behind electromagnetic 

stirrers is creating a rotating magnetic induction field to eventually create an 

electromagnetic force that is applied to the steel liquid. Electromagnetic brakes on the other 

hand generate a static magnetic field which creates Lorentz forces in order to brake the 

fluid motion. This phenomenon has been modelled frequently in various research; in [33] 

where a finite-volume model was implemented using theory of computational fluid 

dynamics and magneto-hydrodynamics. It was shown that both the magnetic induction 

intensity and the position of brake region affect the fluid flow in the mould. As the magnetic 

field is increased, both the recirculating flow velocity and the impingement intensity 

become weak. Similar results were achieved with an electromagnetic stirrer [34] showing 

that the stirrer position effects both the fluid flow and solidification process in the mould.  

1.3.2. Temperature Field 

There has been significant interest in modelling the heat transfer and solidification 

process that occurs in continuous casting; models are used to predict to temperature 

distribution and the solidifying steel shell [30] in order to control the secondary cooling 

and achieve the optimum steel product. Typically, a mathematical heat transfer model is 

used to simulate the solidification process in the continuous caster using technical 

conditions from a steelmaking plant. In [36] the mathematical model formulation is based 

mainly on a two dimensional unsteady state heat transfer equation. Several boundary 

conditions are applied, and the initial condition for the steel casting temperature is 

measured in the tundish from the steel plant. The model was verified by comparing the 

calculated slab surface temperatures with the measured temperature results which resulted 

in a relative error of less than 1.95%. In the end, the model concluded that the casting speed, 

pattern of spray cooling zone, and slab size have the largest influence on the temperature 

field of the slab. By lessening the water flow rate and increasing the casting speed, the 

solidification process can be improved. 
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2. Doctoral Thesis Objectives 

Based on the literature analysis, it becomes clear that the continuous casting process 

is a challenge when designing control systems due to the limitation of applying sensors. 

The existing control loops implemented in the continuous casting process are mainly 

limited to mould level control or temperature distribution control as these variables are 

currently readily available. However, many of the quality defects that occur in the end-

product of the steel depend on the flow patterns in the liquid steel while in the mould. 

Issues such as slug entrapment, meniscus freezing, and other problems heavily determine 

the quality of the steel. Therefore, it is natural to look for solutions where we can try to 

‘see’ inside the liquid steel before it is completely solidified.  

The general objective of this doctoral thesis is to use two-dimensional flow 

monitoring in a control loop to improve the control of a continuous caster. Two such flow 

monitoring sensors will be considered: Ultrasound Doppler Velocimetry (UDV) and 

Contactless Inductive Flow Tomography (CIFT). UDV will be mainly used in designing 

both the process models and controller structures in this thesis. The main reason for this is 

that the experimental data were obtained using a small-scale continuous caster Mini-

LIMMCAST where the UDV sensors were finalised at the beginning of the research 

described in this thesis. On the contrary, CIFT sensors were and still are under development 

to some extent. It can be expected that it will be possible to extend the techniques developed 

with UDV and transfer them into CIFT as both sensors can reconstruct the velocity profile 

in the mould. 

 The general objective of improving the control of a continuous caster can be 

naturally split into several sub-objectives. Firstly, a process model is necessary to design 

and test any at least somewhat advanced controller. Secondly, the general statement that 

the quality of the final product depends on the flow patterns in the mould is true, but by 

itself, it is not a sufficient basis for control. For this reason, the next objective must be to 

identify appropriate quantitative flow characteristics that could be used as controlled 

variables for efficient closed-loop control based on distributed data inside the mould. 

Thirdly, the central objective is to develop the controllers that will use these 

quantitative characteristics as controlled variables while stopper rod position and magnetic 

field of the electromagnetic brake will be manipulated variables.  

Last but not least, the thesis should discuss the possibility of transferring the 

developed methods and techniques to CIFT sensors.  In the end, there should be a clear 

analysis on what are the best approaches regarding processing the sensor data, modelling 

the process, and designing model-based controllers for the continuous casting process. 

The research done in this paper is a part of a European Training Network under the 

Marie Sklodowska-Curie Actions, under the name “Smart tomographic sensors for 

advanced industrial process control (TOMOCON)”. 
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3. Model-Based Control Using System Identification 

In this chapter we aim to find quantitative characteristics of the flow that can be 

used to optimise the flow in the mould. System identification will mainly be used to create 

the process models needed for the control loop. One of the main challenges in designing 

control loops for the continuous casting process is selecting the appropriate variables to 

achieve the optimum flow pattern needed in the mould. Now that two-dimensional flow 

monitorign allows us to view into the mould and have an understanding on the flow 

structures, we need to decide on what are the optimum flow characteristics that would yield 

higher quality steel, and how to control it with our actuators.  

3.1.1. Process Modelling 

A model is needed for both testing and designing the controller in the case of model-

based control. System identification requires uniformly sampled time or frequency-domain 

data with the required inputs and outputs of the system. In our case our input will be the 

current to the EMBr, while the output if the angle of the exiting jet angle.  

3.1.1.1.Linear Model 

The first step will be to create a model for the process without any clogging present in the 

SEN. Process model estimation is used to create a transfer function describing the linear 

system dynamics. Through a process of trial and error where parameters including poles, 

zeros, and time delays are varied, the end result show that the relationship between EMBr 

current and jet angle can be described by a linear model in the form of a first order model 

[38], Where 𝐾𝑝 represents the static gain and the 𝑇𝑝1 represents the time constant.  

𝐺(𝑠) =  
𝐾𝑝

1+𝑠𝑇𝑝1
     (3.1) 

𝐾𝑝 = −0.0442    (3.2) 

𝑇𝑝1 = 1.44            (3.3) 

 

 

 

 

 

 

Figure 3.1. Comparison of simulated model output with measured output 



 
 

13 

 

Comparison of the first order model output with measurement (where the angle was 

calculated from the UDV data using the procedure described above) is shown in Figure 

3.1. This figure gives the response to a series of random step changes of the EMBr current. 

It can be observed that there is a good fit between this first order model and measured data. 

Fast dynamics and relatively short time constant of model are due to the rapid responses of 

the velocity fields in the region of interest to the changes in the magnetic field produced by 

the brakes. It becomes clear that the relationship between brake current and jet angle can 

be described by a linear model in the form of the following first order model.  

3.1.1.2.Non-Linear Model 

As seen in Figure 3.2, it becomes clear that the linear model from the previous 

section is no longer sufficient to describe the dynamic response if clogging occurs as the 

fit percentage goes down to 65.99%. There are two fundamental differences; first, the 

oscillations of the angle are significantly higher with clogging. 

 

 

Therefore, non-linear models were investigated in order to improve the fit 

percentage. This led us to the Wiener model as we would like to keep the model as simple 

as possible while improving the fit percentage of the model. This approach is based on the 

concept of decoupling the linear behaviour from the non-linear behaviour. We will be 

utilizing the Wiener model for the second set of experiments; this set of experiments is 

used for modelling the dynamic response of the jet angle with clogging in the SEN as seen 

in Figure 3.3. The figure compares the response of the models to a series of random step 

changes to the EMBr current.  The increased nonlinearity can be accounted for by adding 

a static nonlinearity to the linear model i.e. by using a Wiener model. The linear part of the 

Wiener model consists of a first order transfer function:  

Figure 3.2. Comparison of Wiener model output with measured output 
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𝐺(𝑠) =  
𝐾𝑝

1+𝑠𝑇𝑝1
     (3.4) 

𝐾𝑝 = 0.063      (3.5) 

𝑇𝑝1 = 1.7     (3.6) 

 

The output of the linear function is fed into a static nonlinear block in order to 

model the output nonlinearity. In this case, the Wiener model allows us to build on the 

linear transfer function and improve the fidelity of the model by adding a static non-

linearity behaviour that has been introduced in the clogging state [40]. Both equations have 

similar absolute values for the time constant. The static nonlinear block in the Wiener 

model contains a piecewise linear function consisting of 2 breakpoints. Figure 3.3 shows 

that the added nonlinear function improves the performance of the model by 14.74%.  

 Figure 3.3. Comparison of Wiener model output with measured output 

3.1.2. Controller Structure 

3.1.2.1.Clogging Detection 

The concept behind using the switched MPC is for the controller to modify its 

response depending on whether there is clogging or not in the SEN. SEN clogging changes 

the response of the jet angle to the changes to the current to EMBr as shown. The controller 

should be able to efficiently keep the angle of the jet between the optimum range in both 

cases of normal operation and during SEN clogging. In order to do so, the controller needs 

to detect if clogging has occurred during operation using information obtained from the 

angle of the jet. Figure 3.4 shows us the angle of the jet for two cases: Case 1 is taken from 

the first set of experiments where there was no SEN clogging during the measurements. 

Case 2 is taken from the second set of experiments where the SEN was partially clogged 

during the measurements. In both figures the EMBr is turned off. In the case of clogging, 

the angle of the jet oscillates more significantly than in the normal operation case. The 

signal contains higher frequencies. By taking advantage of this behaviour, we can detect 

the occurrence of clogging during operation by calculating the standard deviation of the 

signal along a moving window. 



 
 

15 

 

 

 

Figure 3.4. Comparison of jet angle with and without clogging 

3.1.2.2.Model Predictive Control 

Although Proportional-Integral-Derivative (PID) controllers are used in the 

majority of industrial applications, certain limitations make it unfavourable to apply PID 

controllers in specific processes. These include the difficulty of expanding the controller 

for MIMO processes due to interactions between loops. Also, PID controllers themselves 

are unable to incorporate constraints on manipulated variables and controlled variables. A 

possible solution for these issues is the use of Model Predictive Control (MPC). An 

additional advantage of MPC is their ability to predict the future effect of control actions 

and optimize them in order to achieve the desired behaviour.  

3.1.2.3. Switched MPC 

Following the formulation of the MPC, the next step will be to design the Switched 

MPC in order to deal with the two scenarios of clogged and unclogged states. Switched 

MPC has been successfully implemented in processes that exhibit multiple modes [41], 

[42]. The main concept is that the controller is able to transition between multiple MPC 

controllers in real time based on the operating conditions. This is usually done by designing 

each controller based on a specific region of the operating space.  By using a switching 

signal, the current operating region is detected and based on this the appropriate active 

controller is selected.  

3.1.3. Testing and Results 

Two sets of simulations were implemented; the first simulation included the MPC 

based on the linear model. In this simulation we are performing set point tracking in the 

case where there is no clogging and analysing the controller’s response to various changes 

to the set point (see Figure 3.5 and 3.6). The controller is able to successfully track the set 

point with an average settling time of t=5s. In the end, the controller performance is shown 

to be sufficient for controlling the exiting jet angle. The response of the controller is fast 

enough for the dynamics of the system. In the second simulation we are testing the switched 
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MPC and simulating the clogging affect to see how the controller will respond.  Figure 3.7 

shows that from t=0s to t=75s the model for normal operation is used, at t=75s the model 

is switched to the clogged model to simulate clogging in steel casters. We can see that even 

without the clogging being detected by the controller, the MPC is able to perform the 

needed action to bring the angle of the jet to the required set point. At t=100s we simulate 

the clogging being detected and the switching to the second MPC that is designed for the 

clogging model. It is clear that the transition from the first MPC to the second occurs 

smoothly with the set point being tracked efficiently. At t=150s the controller is also able 

to effectively track the set point with the presence of clogging in the process.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Closed loop response for set point tracking 

 

Figure 3.6. Input current for set point tracking 
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Figure 3.7. Comparison of model output with set-point reference 

 

 

Figure 3.8. Input current for set-point tracking 

3.2. Meniscus Velocity 

In this section, we move away from the exiting jet to the meniscus velocity as our 

controlled variable. Meniscus velocity in continuous casting is critical in determining the 

quality of the steel, it needs to be kept between a specific range; too high velocities create 

excessive turbulences that can increase the potential of slug entrapment. On the other hand, 

too low meniscus velocities result in excessive cooling which can cause various surface 

defects as well [7]. Due to the complex nature of the various interacting phenomena in the 

process, designing model-based controllers proves to be a challenge. Therefore, a NARX 

neural network model is trained to describe the complex relationship between the applied 

current to an EMBr and the measured meniscus velocity. Adaptive Model Predictive 

Control (MPC) is used to deal with the non-linearity of the model by adapting the 

prediction model to the different operating conditions. The results in this section were 

published in [43]. 

3.2.1. NARX Neural Network Model 

Using experimental data, a dynamic neural network with feedback connections was 

designed using a nonlinear autoregressive model with exogenous inputs (NARX). The 



 
 

18 

 

NARX model is based on the linear ARX model but instead of using the weighted sum of 

its regressors to predict the current output, it uses a nonlinear mapping function f. In our 

case the nonlinearity estimator will be done using the neural network. The neural network 

time series toolbox in MATLAB was used to design the model. 

The NARX network consists of a two-layered feedforward network. A sigmoid 

function is used in the hidden layer, while a linear transfer function is used in the output 

layer. The tapped delay line allows for previous input and output values to be stored. The 

input x(t) represents the current going to the EMBr, while the output y(t) represents the 

meniscus velocity. It is clear that a feedback connection is needed for the network to take 

in previous values of the meniscus velocity in order to create the dynamic model. In our 

case 10 hidden neurons were used, with the number of delays of 2. 

3.2.2. Adaptive MPC 

The main objective of the control loop is to maintain the meniscus velocity within 

the optimum range and to reject disturbances during the process.  Besides minimum and 

maximum limits related to the optimum range of the meniscus velocity, there is also the 

maximum limit on the current of the EMBr. As it is evident from the previous section, the 

controlled plant is not only nonlinear but there are other issues as well. This nonlinearity 

is not well amenable to analytic description and it may be time varying. This would 

complicate the use of nonlinear MPC. We also regarded it as desirable to keep the 

beneficial features of MPC based on linear models and quadratic programming.  For all of 

these reasons our approach of choice is to implement adaptive MPC where online model 

estimation is used to update the internal plant model in order to achieve a reasonable level 

of control performance with this nonlinear plant. This adaptive MPC is based on 

continuously updated linearized model. For this purpose, NARX Neural network is 

linearized and converted to the discrete time state space. A recursive polynomial model 

estimator is used for the online model estimation. This is used to update the internal model 

of the MPC by linearizing the NARX model  

3.2.3. Testing and Results 

The experiments concentrate on disturbance rejection (see Figure 3.9 and 3.10) 

which is the main objective of this study. One of the main disturbances in the continuous 

casting process is the changing of the casting speed. The casting speed is changed 

sporadically throughout the process; it would be valuable to see if an automatic control 

loop can keep the meniscus velocity in the optimum range and reject the effect that might 

occur from changing the casting speed. The disturbance from changing the casting speed 

will be applied at the output of the model; increasing the casting speed results in an increase 

in the meniscus velocity.  
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In Figure 3.10 we compare the performance of a conventional MPC with the 

adaptive MPC. The disturbance on the output was taken from [7]. Both the MPC and 

adaptive MPC respond to this disturbance in order to keep the meniscus velocity between 

the optimum ranges. In the case of the adaptive MPC, the velocity slightly goes beyond the 

range at T=2725s but it is then brought back to the optimum range at T=2860s. On the 

other hand, the conventional MPC goes beyond the optimum range at T=3100s and is 

unable to bring the velocity back to the optimum range for the remainder of the experiment. 

This is due to the saturation that occurs in the manipulated variable as shown in Figure 

3.10. We can clearly see here that the adaptive MPC outperforms the conventional MPC 

due to its ability to deal with the nonlinearity of the system, especially at the higher current 

ranges of the EMBr where this non-linearity is even more present. 

3.3. MIMO Control Loop 

Previous experiments have included only the EMBr as the manipulated variable; 

the next step will be to extend the control loop to multiple input-multiple output by using 

both EMBr and stopper rod to control the flow in the mould. In this section, we are moving 

away from the meniscus velocity and concentrating once again on the exiting jet. Although 

section 3.2 shows that the meniscus velocity can be controlled and kept within optimum 

Figure 3.9.  Closed loop response for disturbance rejection 

Figure 3.10.  Input current for disturbance rejection 
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ranges using the EMBr, there is a more direct effect on the exiting jet from our actuators. 

For this reason, we are basing our MIMO controller on features related to the exiting jet 

including the jet impingement point and the jet velocity. The results in this section were 

published in [44].  

3.3.1. Extracting Controllable Features 

For the case of the continuous caster, we need to determine the specific features of 

the flow in the mould that can help improve the quality of the steel, and at the same time 

can be controlled using our manipulated variables. The two features chosen in this paper 

for control are the jet impingement point on the narrow wall, and the velocity of the exiting 

jet.  

3.3.1.1. Jet Impingement 

The jet impingement point defines how deep or shallow the jet impinges into the 

mould. The optimum case is to keep the jet as close to the horizontal baseline as possible 

to ensure a shallow impingement. As shown in Figure 3.11, this feature can be quantified 

by calculating the mean value of the velocity field between UDV sensors 5 to 7 (−0.07 m 

to −0.09 m from the surface level). If the value increases, it is more likely that the exiting 

jet is oscillating in this region. The value of the mean velocity will be used as the controlled 

variable. 

 

 

(a) (b) 

Figure 3.11. Reconstruction of velocity profile with identified shallow region to quantify 

jet impingement (a) t = 300 s, (b) t = 800 s. 

3.3.1.2.Jet Velocity 

The idea of using the velocity of the exiting jet is based on section 3.1 where a 

straight line is used to represent the exiting jet. In this section, we will be extending this 

concept to include a more realistic shape of the jet, which has sometimes a more ‘banana’ 

like shape. In order to model this adequately, a third-degree polynomial is used to fit the 

shape of the jet during each captured frame as shown in Figure 3.12. It is clear that the 
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polynomial can track the movement and shape of the jet efficiently. The controlled variable 

is the overall velocity of the jet and is the mean of the velocities along the polynomial. 

  

  

(a) (b) 

Figure 3.12. Reconstruction of velocity profile with tracking of jet shape to quantify jet 

velocity,  (a) t = 500 s, (b) t = 600 s 

3.3.2. State Space Estimation 

A black-box model is created based on both extracted features from the UDV 

measurements and applying system identification to determine the dynamic relationship 

between the inputs and outputs. A 2-input, 2-output model is created where the inputs are 

the current of electromagnetic brake and the stopper rod position, while the outputs are the 

jet impingement point and the jet velocity. The current of the brake was varied from 0 to 

600 A, while the lifting of the stopper rod position was between 5–10 mm. State space 

estimation using subspace was used in this section. The output of the state space model 

was compared with the measurement output in Figure 3.13 and 3.14. The model is able to 

track the deterministic part of the signal which is the dynamic response due to the changes 

to the manipulated variables.  

 

 

 

 

 

 

 

Figure 3.13. Comparison of the output of model with the measured output for jet 

impingement. 
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Figure 3.14. Comparison of the output of model with the measured output for jet velocity.  

3.3.3. MPC Based on MIMO Model 

As mentioned before, MPC algorithms can easily be expanded for multivariable 

control problems. The cost function J can be expanded to include multiple controlled and 

manipulated variables. The main control objectives for the experiments conducted in this 

section are to achieve a shallow jet impingement and maintain the jet velocity within an 

optimum range.  

3.3.4. Testing and Results 

In Figure 3.15 and 3.16 the dynamic response of the system to the changes in the 

set-points is presented. A stochastic signal is superimposed at the output to emulate the 

effect of turbulence. At t = 100 s a negative step input is applied to both set-points, while 

at t = 250 s a positive step input is applied. The figures show that the controller can track 

both set-points in the positive and negative step changes. Both dynamic responses have a 

settling time of ~20 s, although the jet velocity overshoots the set-point before settling 

down. Furthermore, Figure 3.17 and 3.18 show the manipulated variables during the 

experiments. The controller can achieve the control objectives without exceeding the 

constraints on the manipulated variables.  

 

 

 

 

 

 

 

Figure 3.15. Closed loop response of jet impingement for set-point tracking. 
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Figure 3.16. Closed loop response of jet velocity for set-point tracking. 

 

 

 

 

 

 

 

 

Figure 3.17. Changes of electromagnetic brake current.  

 

 

 

 

 

 

 

Figure 3.18. Changes of the stopper rod position generated by the controller to track the 

jet velocity.  
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4. Control Loop Structure Based on CIFT 

CIFT is a tomographic sensor that is able to measure the multi-dimensional velocity 

fields of conductive fluids; this is done by measuring the perturbations of an applied 

magnetic field caused by the flow of the conductive fluid. Similarly, to UDV, this sensor 

can be applied to the mould of the continuous caster in order to provide multidimensional 

data on the velocity fields. While UDV is able to obtain velocity component in one 

direction of the ultrasound beam, CIFT is able to measure the three-dimensional velocity 

fields. The main concept of the CIFT technique relies on the flow of the conductive liquid 

going through a magnetic field created by the CIFT transmitter sensors. This creates 

electrical currents in the mould which results in an induced magnetic field. The induced 

magnetic field is measured by the receiver sensors and is used to reconstruct the velocity 

field in the mould. Figure 4.1 shows the reconstructed velocity profile from an experiment 

conducted on the Mini-LIMMCAST setup. The figure shows that we are able to reconstruct 

both sides of the mould, in this case we can see a clear double roll flow in the mould. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, we will extend the techniques used for UDV measurements to CIFT 

measurements for the purpose of control. The exiting jet angle will be obtained from the 

3-D velocity fields from the CIFT data. The feasibility of using CIFT in a control loop 

similarly to UDV will be analysed. In the case of UDV measurements, we concentrated on 

the mid-region between the SEN and the narrow face wall. Velocities near the narrow face 

wall were avoided due to the turbulence affecting the accuracy near the wall. In the case of 

CIFT, we instead concentrate on the velocities near the narrow phase wall because it is 

more accurate than the velocities in the mid-region. This is due to the fact that velocities 

closer to the receiver sensors have a higher accuracy compared to the velocities in the mid-

Figure 4.1. Reconstructed velocity profile from CIFT showing a double roll 

flow in the mould 

 



 
 

25 

 

region. By concentrating on the narrow face wall, we are able to identify the impingement 

point of the jet and correlate this with the jet angle.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 depicts the angle of the jet in response to random changes to the EMBr 

current. Random current steps are applied to the EMBr to record the full dynamics of the 

process, while the CIFT sensors measure the induced magnetic field. This induced 

magnetic field is used to reconstruct the velocity fields, where the angle of the jet is 

obtained from the impingement point on the narrow face wall. The figure shows that it is 

difficult to conclude a clear relationship between the angle of the jet and the EMBr current. 

It is expected that the CIFT sensors would not produce equally clear results as UDV 

because UDV relies on the direct measurements of the ultrasound beams, while CIFT 

requires an added step of the linear inverse problem to reconstruct. Although the potential 

of using CIFT for control of the continuous caster is there, the accuracy of the 

reconstruction algorithm requires further improvement due to the effect of the EMBr 

applied magnetic field.  The main challenge faced by CIFT in the process of the continuous 

caster is the applied magnetic field from the EMBr. The EMBr requires large ferromagnetic 

pole shoes in order to amplify the magnetic field of the brake, which has an effect on the 

excitation field. Therefore, in order to use the EMBr in a control loop, the magnetic field 

of the EMBr has to be readjusted accordingly.  

  

Figure 4.2. Response of jet angle to current changes to the EMBr on left 

half of mould 
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5. Summary and Conclusion 

The general objective of this doctoral thesis was to use two-dimensional flow 

monitoring sensors in a control loop to improve the control of a continuous caster. This 

objective was motivated by the fact that many of the quality issues occurring in the end 

product of the continuous casting process are related to the flow patterns in the mould. By 

utilizing these sensors, we can obtain information on the flow structure in the mould in a 

non-invasive manner. This thesis mainly used ultrasound Doppler Velocimetry (UDV) as 

the flow monitoring sensor.  

In Chapter 3 we aimed to create a process model using system identification using 

data coming from UDV. The Mini-LIMMCAST setup allowed us to obtain experimental 

data from the sensors and use them to create the models needed for control design and 

model-based control. However, multivariable measurements from UDV sensors could not 

be used directly for identification because they cannot be considered controlled variables 

for which set points can be specified. It was necessary to find appropriate quantitative flow 

characteristics that could be used as controlled variables for efficient closed-loop control. 

At first, we considered EMBr as a manipulated variable, which means there should 

be just one controlled variable. The exiting jet angle was proposed as a first quantitative 

characteristic that could be used as a single controlled variable. Experimental data from the 

Mini-LIMMCAST setup was used to create a transfer function describing the relationship 

between the EMBr and the angle of the jet. An MPC was designed to control this angle and 

keep it within optimum ranges under disturbance. This idea was extended in section 3.1.2. 

by using experimental data from a clogged SEN to design an algorithm that would detect 

SEN clogging by analyzing the oscillations of the jet angle. This information was then used 

to create a switched MPC that could control the system whether there was clogging or not 

in the SEN. An alternative characteristic was investigated in section 3.2, where meniscus 

velocity was used as a variable controllable by the  EMBr. In this case, it was found by 

analyzing the experimental data that the dynamic relationship between EMBr and meniscus 

velocity is nonlinear. For this reason, a NARX neural network had to be employed to 

describe the relationship, and adaptive MPC had to be developed instead of standard MPC 

based on one fixed model. It has turned out that this adaptive MPC can cope with the 

system's nonlinearities successfully without violating the process constraints.  

Lastly, in section 3.3, the control was extended to the multivariable case by 

introducing the stopper rod position as another manipulated variable besides the EMBr. 

The investigation has shown that jet impingement point and jet velocity are the most 

suitable controllable flow characteristics in the case of this two-input, two-output control 

configuration. Similarly, as in the case of single-input, single-output control configuration, 

system identification was used to obtain the control-oriented model. A fourth-order discrete 

state-space model described the deterministic component of the process response with 
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sufficient precision. However, there was also a significant unmodelled stochastic 

component resulting from the turbulent flow. Despite this, the model was precise enough 

to be used as a part of the model-based predictive controller, which could track both set-

points without exceeding any constraints. In this way, optimal flow structures in the mould 

could be achieved.  

In the end, it can be stated that several characteristics can be extracted from the 

UDV measured velocity profiles in the region surrounding the SEN in the mould. These 

characteristics can be used by model-based controllers in single-variable or two-variable 

configurations to adjust the flow structure in the mould according to the specified set 

points. The techniques used for control loop design can be extended to other sensors based 

on multidimensional data if similar information on the velocity fields of the mould is 

obtained. In Chapter 6, we attempted to extend these techniques to CIFT, where we used 

the velocity profile to obtain the exiting jet angle. Although CIFT is able to reconstruct the 

flow structures in the mould successfully, an issue occurs when introducing changes to the 

EMBr current. The main reason for this is the effect of the EMBr magnetic field and 

especially of the magnetic hysteresis associated with the ferromagnetic parts of the EMBr 

on CIFT measurements. It is possible to build a model of these hysteretic effects and 

compensate for them. CIFT can then be utilized in a control loop similarly to UDV. 

However, correct compensation for continuous-valued EMBr current (and not only for one 

or several discrete values of this current) remains still an open research problem.  

Despite these remaining issues, it can be stated in conclusion that it has been shown 

that two-dimensional flow monitoring can be utilized in a control loop to control the flow 

structure in the mould of a continuous caster. The first objective of creating a process model 

was achieved mainly through system identification. Furthermore, by quantifying flow 

characteristics using the exiting jet, meniscus velocity, jet impingement point, and jet 

velocity, we could achieve our next objective of identifying characteristics that can be 

utilized as controlled variables for optimizing the flow in the mould. Lastly, through 

designing and testing various control strategies, we can achieve our third major objective 

of developing controllers using the necessary quantitative flow characteristics. 

An interesting objective for future work would be to introduce more complex 

actuators to the process to achieve even better control over the flow in the mould. An 

example of this can be an electromagnetic stirrer that creates a rotating magnetic induction 

field and corresponding electromagnetic force applied to the steel liquid. The combined 

actuators can potentially allow us to optimize the flow patterns on both sides of the mould. 
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