


Abstrakt (CZ)
Disertační práce se zabývá numerickým modelováním 3D nestlačitelného proudění
vzduchu při lidské fonaci pěti kardinálních samohlásek /u, i, A, o, æ/. Vědecký přínos
této práce je v popisu souvislosti mezi výpočtem turbulentního proudění při použití
konvenčního subgrid modelu (jednorovnicový, WALE), či nově implementovaného
anizotropního minimálně disipačního (AMD) subgrid modelu a jeho vlivu na
aeroakustický výpočet fonace. Vzhledem k velké škále měřítek v turbulentním proudění
a v akustice je simulace rozdělena tak, že výpočet nestlačitelného proudění v hrtanu je
realizován metodou konečných objemů na jemné síti a zdroje zvuku včetně šíření
zvukových vln od hrtanu až do vyzařovaného prostoru okolo úst metodou konečných
prvků na hrubé akustické síti.

Abstract
This dissertation deals with numerical modeling of 3D incompressible laryngeal flow
during human phonation of five cardinal vowels /u, i, A, o, æ/. This work aims to
describe the correlation between turbulent flow simulations with a conventional
(One-equation, WALE) or newly implemented anisotropic minimum dissipation (AMD)
subgrid-scale model and its impact on the aeroacoustic spectrum in human phonation.
Given the large variety of scales in the flow and acoustics, the simulation is separated in
two steps: computing the flow in the larynx using the finite volume method on a fine
grid followed by computing the sound sources and wave propagation from the larynx to
the radiation space around the mouth using the finite element method on a coarse
acoustic grid.
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1 Introduction
1.1 Principles of voice production

The generation of a human voice is a highly complex biophysical process, where the
viscoelastic multi-layered tissues of the vocal folds interact with the airflow expired from
the lungs, start to self-oscillate, and close the channel periodically. The vocal fold
oscillation and glottal closure modulate the mass flux, create complex turbulent
structures and pressure disturbances, which form the voice source. This source signal is
modulated by the vocal tract, radiated from the mouth, and perceived as a human
voice. Physiological principles are precisely described in the monograph by Titze (1994).

1.2 Objectives of the thesis

This thesis builds on the work of the author’s predecessors (Šidlof et al., 2015; Zörner
et al., 2016). The main objectives of the thesis are as follows:

• To perform 3D large-eddy simulations of laryngeal airflow.

• To perform 3D aeroacoustic simulations of human phonation.

• To perform deep literature search and seek for recent less common subgrid-scale
turbulence models, potentially suitable for laryngeal flow modeling.

• To implement such a new subgrid-scale model in OpenFOAM.

• To make a conclusion about the impact of using subgrid-scale turbulence models on
human phonation modelling.

The full version of the doctoral thesis is available here:
https://astra.nti.tul.cz/∼martin.lasota/Lasota-PhD2022.pdf

https://astra.nti.tul.cz/~martin.lasota/Lasota-PhD2022.pdf
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2 CFD model of incompressible
laryngeal flow

2.1 Mathematical model

Large-eddy simulation is a mathematical concept for modeling turbulent flows, which
deals with flow structures carrying most kinetic energy, i.e. spatially organized large
scales. These consist of two main categories: coherent structures and coherent vortices
of recognizable shape (Lesieur et al., 2005). In the numerical implementation, the
characteristic length ∆, defining a cutoff between resolved large scales and modeled
subgrid scales, is usually given by the mesh grid spacing (Versteeg and Malalasekera,
2007).
In the LES concept, any flow variable f(x, t), where x = (x1, x2, x3) is the spatial

coordinate and t time, may be decomposed as

f(x, t) = f(x, t) + f ′(x, t), (2.1)

where f(x, t) = Gf (x) ∗ f(x, t) =
∫
Gf (r,x,∆)f(x− r, t)dr is the large-scale component,

obtained by spatial filtering, and f ′(x, t) is the small subgrid-scale contribution. Filtered
variables for LES are functions of time and space, unlike the Reynolds averaged variables,
hence in LES: f ̸= f , f ′ ̸= 0.
The convolution introduced above contains a filter function Gf separating spatial

scales. Commonly used filters are the top-hat filter (2.2), the Gaussian filter (2.3) and
the spectral cut-off filter (2.4):

Gf (r,x,∆) =

{
1/∆3 for |r| ≤ ∆/2,

0 otherwise,
(2.2)

Gf (r,x,∆) =
( 6

π∆2

)1/2

exp
(
− 6|r|2

∆2

)
, (2.3)

Gf (r,x,∆) =
3∏

i=1

sin(ri/∆)

ri
. (2.4)

The top-hat filter is used in the current simulation, which is a common choice in
low-order finite volume methods.
The effect of subgrid-scale (SGS) contributions on the large flow scales relies on the

assumption of isotropic (non-directional) small-scale turbulence and is modeled.
Compared to the Reynolds stresses in RANS, the SGS stresses carry much less of the
turbulent energy, so the model’s accuracy is less critical. The LES solution seeks to
compute only the scales of motion larger or equal than the filter width ∆.
The continuity and momentum equations for the incompressible fluid flow, with LES

filtering applied, can be written as

∂ui
∂xi

= 0, (2.5)
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∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (2.6)

where ui is the filtered velocity, p represents the filtered static pressure and ν is the
kinematic molecular viscosity. The term uiuj is the dyadic product and cannot be
expressed directly (Ferziger, 1998). Modification of the momentum equation (2.6) by
+ ∂

∂xj
(uiuj) yields

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

. (2.7)

The new term on the right-hand side of (2.7) is the divergence of the subgrid-scale (SGS)
turbulent stress tensor

τij = uiuj − uiuj = −(u
′
iu

′
j + uiu

′
j + u

′
iuj + uiuj − uiuj), (2.8)

where the individual tensors are: −u′
iu

′
j the Reynolds-stress-like term, −(uiu

′
j + u

′
iuj) the

Clark term (Clark et al., 1979) and −(ui uj + uiuj) the Leonard term (Leonard, 1975).
The SGS stress tensor τij is left to be modeled to close the set of equations.
Since the turbulence is not fully understood, a wide range of closure models have been

introduced, often using heuristic and ad hoc techniques.

2.1.1 AMD SGS model

The anisotropic minimum-dissipation (AMD) subgrid-scale model was derived by Rozema
et al. (2015) with modified Poincaré inequality addressing the grid anisotropy. The AMD
model has not yet been applied in numerical simulation of human phonation, and thus
the model was chosen as a candidate to new implementation performed by the author of
this thesis into the OpenFOAM CFD package.
AMD is developed from the QR model (Verstappen, 2011), and both models are in

the category ”minimum-dissipation models”. The main objective of these models is to
ensure that the energy of subgrid scales is not increasing

∂t

∫
Ωδ

1

2
u

′

iu
′

idx ≤ 0. (2.9)

In the situation where subgrid scales are assumed to be periodical on filter box Ωδ, it is
possible to apply the Poincaré inequality, and define thus the upper bound of the SGS
energy on the left side ∫

Ωδ

1

2
u

′

iu
′

idx ≤ CA

∫
Ωδ

1

2
(∂iuj)(∂iuj)dx. (2.10)

The right hand side corresponds to the velocity gradient energy, and CA is the Poincaré
constant

CA = (δ/π)2 (2.11)

for the LES filter of width δ. The evolution of the right hand side in (2.10) can be written,
considering Taylor expansion of the exact subgrid-scale tensor, as
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∂t

(
1

2
(∂iuj)(∂iuj)

)
=

R1︷ ︸︸ ︷
−(∂kui)(∂kuj)Sij −(∂kSij)∂k(2νSij)− (∂kSij)∂k(2ν

QR
t Sij) + ∂ifi

(2.12)
where fi is the flux of velocity gradient energy and ν

QR
t is the turbulent viscosity defined

by the QR model. Upon spatial integration over the LES filter, the divergence term ∂ifi
can be rewritten to a boundary integral. The boundary integrals express transport of
velocity gradient energy instead of production or dissipation and thus can be ignored in
the derivation of minimum-dissipation models (Rozema et al., 2015). The term R1 from
(2.12) is the production of the velocity gradient energy and can be rewritten to

−(∂kui)(∂kuj)Sij = 4IIIS +∇ · (...), (2.13)

having the important third invariant of the resolved strain-rate tensor

IIIS = −detS = −1

3
tr(S3) = −1

3
SijSjkSki. (2.14)

The dissipation rate of the velocity gradient energy is∫
Ωδ

2IIS dx =

∫
Ωδ

SijSijdx ≤ Cδ

∫
Ωδ

(∂kSij)(∂kSij)dx, (2.15)

where the second invariant is

IIS =
1

2
tr(S2) =

1

2
SijSij. (2.16)

Finally, the condition which is necessary for the eddy disipation to stop the production
of the velocity gradient energy is in the form

4

∫
Ωδ

IIIS dx ≤ 4
νQR
t

CA

∫
Ωδ

IIS dx. (2.17)

The minimum eddy dissipation is thus equal to

νQR
t = CAδ

2max{IIIS, 0}
IIS

, (2.18)

where CA is a model constant. The third invariant IIIS vanishes in flows that are laminar
(Vreman, 2004). To summarize:

• The production term in (2.12) is proportional to the dissipation of the leading term
on the right-hand side in (2.13).

• The dissipation of the energy of subgrid-scales is proportional to IIIS.

• The QR model is consistent with the eddy dissipation of the exact subgrid-scale
tensor.



Chapter 2.1: Mathematical model 5

The main drawback of the QR model is necessity to set a filter width δ and applicability
on isotropic grids only.
The AMD model can sidestep the dependence of model constants on the filter width

by using the modified Poincaré inequality

∫
Ωδ

1

2
u

′

iu
′

idx ≤ CA

∫
Ωδ

R2︷ ︸︸ ︷
1

2
(δxi∂i︸ ︷︷ ︸

R3

uj)(δxi∂iuj) dx, (2.19)

where Ωδ is the filter box, having dimensions δx1, δx2 and δx3, and CA is a model constant,
which will be discussed later. The term R2 is the scaled velocity gradient energy, R3 the
scaled gradient operator. The inequality (2.19) demonstrates that the sub-grid energy is
confined by imposing a bound on the term R2 (Rozema et al., 2015). Time derivative is
applied on the term R2 and the evolution equation of R2 on the filter box δxi is expressed

∂t

(
1

2
(δxi∂iuj)(δxi∂iuj

)
=

R4︷ ︸︸ ︷
−(δxk∂kui)(δxk∂kuj)Sij −

− (ν + νAt )δxk∂k(∂iuj)δxk∂k(∂iuj) + ∂ifi,

(2.20)

where the term R4 is the production of the scaled velocity gradient energy. This means
the third invariant is not computed from the resolved strain-rate tensor Sij, such as in
the QR model (2.14), and for the second invariant in (2.16).
The following inequality ensures that the AMD model predicts sufficient dissipation

to stop the production of scaled velocity gradient energy R4∫
Ωδ

−(δxk∂kui)(δxk∂kuj)Sijdx ≤ νAt
CA

∫
Ωδ

(∂iuj)(∂iuj)dx, (2.21)

where the minimum dissipation effect is held by satisfying

νAt = CA

max{
∫
Ωδ

−(δxk∂kui)(δxk∂kuj)Sijdx, 0}∫
Ωδ
(∂lum)(∂lum)dx

. (2.22)

Integrals in (2.22) can be approximated by the mid-point rule, and the turbulent viscosity
from AMD νAt results in a more practical form

νAt = CA

n︷ ︸︸ ︷
max{

−AijSij︷ ︸︸ ︷
−(δxk∂kui)(δxk∂kuj)Sij, 0}

(∂lum)(∂lum)︸ ︷︷ ︸
d

. (2.23)

The terms −AijSij and d are written as
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AijSij = (δxk∂kui)(δxk∂kuj)Sij =

=
3∑

i,j=1

(
δx1

∂ui
∂x1

+ δx2
∂ui
∂x2

+ δx3
∂ui
∂x3

)(
δx1

∂ui
∂x1

+ δx2
∂ui
∂x2

+ δx3
∂ui
∂x3

)
Sij =

= S11

(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)
+

+ S12

(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)
+

+ S13

(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)
+

+ S21

(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)
+

+ S22

(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)
+

+ S23

(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)
+

+ S31

(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)
+

+ S32

(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)
+

+ S33

(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)
(2.24)

and

d = (∂lum)(∂lum) =

=
3∑

l,m=1

(
∂um
∂xl

)(
∂um
∂xl

)
=

=

(
∂u1
∂x1

)(
∂u1
∂x1

)
+

(
∂u2
∂x1

)(
∂u2
∂x1

)
+

(
∂u3
∂x1

)(
∂u3
∂x1

)
+

+

(
∂u1
∂x2

)(
∂u1
∂x2

)
+

(
∂u2
∂x2

)(
∂u2
∂x2

)
+

(
∂u3
∂x2

)(
∂u3
∂x2

)
+

+

(
∂u1
∂x3

)(
∂u1
∂x3

)
+

(
∂u2
∂x3

)(
∂u2
∂x3

)
+

(
∂u3
∂x3

)(
∂u3
∂x3

)
=

= (∇u) : (∇u). (2.25)

The implementation of −AijSij is shown on lines 10 and 13, the whole nominator n is
on line 13, and the whole denominator d refers to line 14; implemented into OpenFOAM
(version 6 and 7).
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1 template<class BasicTurbulenceModel>
2 void LAAMD<BasicTurbulenceModel > : : c o r r e c t ( )
3 {
4 LESeddyViscosity<BasicTurbulenceModel > : : c o r r e c t ( ) ;
5
6 const vo lVec to rF i e ld& U = this−>U ;
7 tmp<volTensorFie ld> tgradU ( fvc : : grad (U) ) ;
8 const vo lTensorF ie ld& gradU = tgradU ( ) ;
9 volSymmTensorField S( dev (symm(gradU ) ) ) ;
10 vo lTensorF ie ld Ai j= ( this−>de l t a ( )∗ gradU)&( this−>de l t a ( )∗ ( gradU ) .T( ) ) ;
11 d imens ionedSca lar my nul l ( ”my nul l ” ,
12 dimensionSet (0 ,2 , −3 ,0 ,0 ,0 ,0 ) , s c a l a r ( 0 ) ) ;
13 vo l S c a l a rF i e l d n = max(−Aij && S , my nul l ) ;
14 vo l S c a l a rF i e l d d = gradU && gradU ;
15
16 // s c a l a r C A = 0.57735 ;
17 nu amd = (0 .57735∗ n )/ d ;
18
19 correctNut ( ) ;
20 }
21
22 template<class BasicTurbulenceModel>
23 void LAAMD<BasicTurbulenceModel > : : correctNut ( )
24 {
25 vo l S c a l a rF i e l d k ( this−>k ( fvc : : grad ( this−>U ) ) ) ;
26
27 this−>nut =nu amd ;
28 this−>nut . correctBoundaryCondit ions ( ) ;
29 fv : : opt ions : : New( this−>mesh ) . c o r r e c t ( this−>nut ) ;
30
31 BasicTurbulenceModel : : correctNut ( ) ;
32 }

Line 17 shows the turbulent viscosity via computed by (2.23), including the value of
the model constant CA. The constant suitable for the AMD model is recommended
from (Rozema et al., 2015) with respect to the order of discretization of Navier-Stokes
equations, tested on decaying grid turbulence cases. The AMD model gave the best results
with CA = 0.300 for a central second-order scheme and CA = 0.212 for a fourth-order
scheme. A recent study by Zahiri and Roohi (2019) states an optimal value of the constant
CA = 1√

3
= 0.577 based on various study cases.

Rozema et al. (2015) has shown that after a Taylor expansion of τij it can be shown
that the AMD model is really consistent with the exact subgrid-scale stress tensor

τij = uiuj − uiuj =
1

12
(δxk∂kui)(δxk∂kuj) + O(δx4i ) (2.26)

and the eddy dissipation of the exact subgrid-scale stress tensor is approximated as

−τijSij = − 1

12
(δxk∂kui)(δxk∂kuj)Sij + O(δx4i ), (2.27)

which means that the term Aij in (2.23) is consistent with the product of Taylor series in
(2.27). The term Aij is also referred as the gradient sub-filter model (Vreman, 1995). If
the exact eddy dissipation gives zero dissipation, then the term Aij as well, this means the
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AMD model can be switched off for flows where the exact eddy dissipation is vanishing.
Thus, the AMD model also switches off when no SGS energy is created (Rozema et al.,
2015; Vreugdenhil and Taylor, 2018).
The anisotropic behavior of the AMD model can be advantageous in dynamic mesh

applications, such as the moving grid within the glottis.

2.2 Geometry and boundary conditions

The computational domain for the CFD simulation represents a simplified model of the
human larynx with a rectangular cross-section, consisting of a short subglottal channel,
glottal constriction formed by the vocal folds, ventricles, further contraction by the false
vocal folds, and straight supraglottal channel (see Fig. 2.1).

Fig. 2.1: Mid-coronal (x-y) section of the CFD computational domain, domain boundaries
and details of the computational mesh. The z-normal (front and back) boundaries belong
to Γwall. Enclosed figures about mesh representation are discussed in Chap. 2.3.

The geometry of vocal folds is based on the M5 parametric shape by Scherer et al. (2001).
The false vocal folds were specified according to data published by Agarwal et al. (2003).
The geometrical model is in 3D, having a square cross-section at inlet 12x12 mm. More
details can be found in (Šidlof et al., 2015). The boundary conditions for the CFD
model are summarized in Tab. 2.1. The flow is driven by constant pressure difference
Pk = p/ρ = 300 m2/ss between the inlet Γin and outlet Γout. The velocity on Γin and Γout

is computed from the flux. The flow enters at the inlet and exits at the outlet or is set to
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zero in case of backflow. On the fixed channel walls, a no-slip boundary condition u = 0
is prescribed.

Tab. 2.1: Boundary conditions for the filtered flow velocity u and static pressure p. The
symbol n is the unit outer normal and h(x, t) is the prescribed displacement of the vocal
folds. Γwall also includes the front and back surface.

Boundary u [ms−1] p [Pa]

Γin u = 0 if u · n < 0, 350
∇(u) · n = 0 if u · n > 0

Γout u = 0 if u · n < 0, 0
∇(u) · n = 0 if u · n > 0

ΓbVF, ΓuVF u1 = 0, u2 = ∂
∂t
h(x, t), u3 = 0 ∇(p) · n = 0

Γwall u = 0 ∇(p) · n = 0

On the moving boundaries ΓbVF and ΓuVF, the flow velocity is equal to the velocity of
the moving vocal fold surface, given by function h(x, t). The function h(x, t) based on
the sinusoidal displacement w1,2 = A1,2 sin(2πfot+ ξ1,2) ensures the vibrating motion of
vocal folds in the medial-lateral (y) direction with two degrees of freedom. In the
current simulation, the vocal folds oscillate symmetrically with a frequency fo = 100 Hz,
amplitudes at the superior and inferior vocal fold margin are A1 = A2 = 0.3 mm. The
medial surface convergence angle is marked in Fig. 2.1 as ψ/2, which confines the
convergent and divergent position (-10 deg and +10 deg). In this study, the oscillation
of the vocal folds allows closing/opening the glottal gap g in the range 0.42-1.46 mm.

2.3 Mesh

In wall-bounded flows, the presence of solid walls fundamentally influences the flow
dynamics, turbulence generation, and transport in the near-wall regions due to
significant viscous stresses. The accuracy of the numerical simulation is thus closely
related to the grid resolution near the walls.
The computational mesh in the current CFD simulation (see Fig. 2.1) is

block-structured to capture well the boundary layer and consists of 2.1M hexahedral
elements. An open source 3D finite volume mesh generator blockMesh was used to build
the mesh. The mesh deforms in time due to vocal fold oscillation. The grid resolution in
wall units was evaluated in three distinct time instants, corresponding to a maximum
opening of the vocal folds, full closure during the divergent phase and full closure during
the convergent phase. On the boundary ΓbVF at the critical time when the vocal folds
are maximally adducted were evaluated these values: y+avg = 1.77, z+ = 14 and x+ = 8.

2.4 Discretization and numerical solution

The Navier-Stokes equations were discretized using the collocated cell-centered Finite
Volume Method. Fletcher (1991) demonstrated that even-ordered derivatives in the
truncation error are associated with numerical dissipation, and odd-ordered spatial
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derivatives are associated with the numerical dispersion in the solution. Ideally, LES
simulations should use schemes with low numerical dissipation. The non-dissipative
central differencing scheme, which was applied in this study, allows an accurate
representation of the changing flow field (Launchbury, 2016). The discretization of the
diffusion term is split into an orthogonal and cross-diffusion term, using a procedure
described in (Jasak, 1996). Unlike the discretization of the temporal, convective, and
orthogonal part of the diffusive term, the nonorthogonal correctors are treated explicitly.
CFD simulations were run in parallel on:

1. Charon (Metacentrum NGI - Faculty of Mechatronics, Technical University of Liberec)

• 20 cores on a computational cluster, composed of nodes with two 10-core Intel Xeon
Silver 4114 2.20GHz CPUs with 96GB RAM,

2. Fox (Computing center of the Czech Technical University in Prague)

• 20 cores on a supercomputer (SGI Altix UV 100) with shared memory 576GB RAM
with the involvement of 6-core Intel Xeon Nehalem 2.66GHz CPUs.

In order to have sufficient resolution in the spectrum of the aeroacoustic signal, a
sufficiently long simulation time t = 0.2 s, i.e. 20 periods of vocal fold vibration, is
needed. For such a setting, one CFD simulation required 27 - 37 days, i.e. about 15000
core-hours of computational time.

2.5 CFD results

The current study reports on the results of four CFD simulations using different
turbulence modeling approaches, which are summarized in Tab. 2.2. The simulations
were run in parallel on 20 CPU cores for 20 periods of vocal fold oscillations, either on
the computational cluster Charon, or on the symmetric multiprocessing machine Fox.

Tab. 2.2: Overview of the CFD simulations.

Case Type SGS model CPU Cluster Wall-time
LAM laminar - 20 Charon 27d 13h
OE LES One-Equation 20 Charon 34d 05h
WALE LES WALE 20 Charon 37d 13h
AMD LES AMD 20 Fox 34d 18h

2.5.1 Laryngeal flow rate

Fig. 2.2 shows the glottal opening and flow rates during the last four simulated cycles of
vocal fold oscillation. The time tN corresponds to the instant where the inferior margins
of the vocal folds approach most and reduce the glottal opening to 5.58mm2. Time
instant tC is the maximum approach of the superior vocal fold margins, where the glottal
opening drops to 4.98mm2. The third time instant, tO, corresponds to the maximum
glottal opening of 17.51mm2. Glottal gaps listed in mm are in Tab. 2.3.
The subgrid-scale models affected the flow rates Q[l/s] (see Fig. 2.2): the predicted peak
flow rate in the laminar case is higher than in the One-Equation, WALE and AMD
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Fig. 2.2: Glottal gap and flow rates during four oscillation cycles. Time instants for
further analysis: tN = 0.1900 s, tC = 0.1927 s and tO = 0.1963 s.

Tab. 2.3: Glottal gaps at time instants.

Time g[mm2] VF gap[mm]
tN 5.58 0.465
tC 4.98 0.415
tO 17.51 1.459

SGS models by 16.76%, 5.26% and 9.3%, respectively. This is caused by the different
values of the SGS viscosity, which adds to the molecular viscosity and limits the flow
rate through the glottal constriction. The laminar model does not capture the influence
of small-scale turbulence, which corresponds to νt = 0. The WALE SGS model and
the One-Equation SGS model compute with non-zero SGS viscosity, with the latter one
significantly higher due to the already mentioned deficiency of the One-Equation model,
which overestimates the turbulent viscosity near the vocal fold surfaces. The flow rate
does not reach zero value, corresponding physiologically to breathy phonation. The vocal
folds do not fully close the glottal channel from technical reasons. The minimum flow rate
is Qmin ≈ 0.122 l/s. The maximum flow rates are between 0.358− 0.434 l/s, see Tab. 2.4.
The peak flow rate predicted by the AMD model occurs sooner than in other simulations
(when 66% of the VF cycle is reached).

Tab. 2.4: Minimum and maximum flow rates [l/s] and state of the oscillation cycle of
vocal folds [%] when the maximum flow rate is reached.

Case Qmin[l/s] Qmax[l/s] VF cycle(Qmax)[%]
LAM 0.129 0.434 69
OE 0.122 0.358 67
WALE 0.128 0.409 69
AMD 0.127 0.389 66
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2.5.2 Velocity and pressure distribution

The CFD simulations provide filtered velocity and pressure fields (u, p). For simplicity the
overbars are dropped in the following presentation of results. Fig. 2.3 shows 3D laryngeal
velocity fields during vocal fold oscillation. The jet in the supraglottal region interacts
with turbulent structures and gradually decays.

Fig. 2.3: Visualization of laryngeal flow at tN , tC and tO. Contours of the jet can be
observed.
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2.5.3 Vorticity field

Vorticity (ω = ∇ × u) is commonly used for characterizing turbulence in cases with no
entrainment rotation. The vorticity fields reveal the shear layers, where vortices are shed
as a consequence of Kelvin-Helmholtz instability. The vortices may undergo successive
instabilities, leading to a direct kinetic-energy cascade towards the small scales.
Fig. 2.4 shows vorticity fields presented in mid-coronal plane (x-y). The supraglottal

jet deflects stochastically towards either of the ventricular folds. This behavior is not a
consequence of the SGS model, it is caused by the bistability of the flow in this symmetric
geometry (Erath and Plesniak, 2010; Lodermeyer et al., 2015). Detailed analysis of the
vorticity within the glottal region shows that the average value of vorticity in glottal
region is similar for all SGS models.

Fig. 2.4: Vorticity fields |ω| in mid-coronal plane in range (0,30000) [s−1].
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Fig. 2.5 shows a complementary view on the magnitude of the vorticity vector |ω|
in mid-sagittal plane (x-z). The simulation with the AMD model predicts low vorticity
in the vicinity of the glottis. The absence of vorticity may imitate the situation in the
realistic larynx where the jet is frequently stopped and renewed, and thus the turbulent
eddies are forced to be dissipated.

Fig. 2.5: Vorticity fields |ω| in mid-sagittal plane in range (0,30000) [s−1].

2.5.4 Turbulent viscosity field

The effect of the unresolved turbulent subgrid scales on the resolved scales is carried by
the subgrid-scale turbulent viscosity νt.
Figs. 2.6-2.7 show that the turbulent viscosity predicted by the simulation with the

One-Equation model is very high in regions of pure shear, especially within glottis. This
may be the reason why the simulation with the OE model predicted most of the time the
lowest intraglottal velocity. In contrast to this, WALE and AMD subgrid-scale models
predicted considerably lower subgrid-scale viscosity in the shear layers at tN and tC. The
fields computed by the AMD model seem to be similar to fields computed by WALE with
spots of gently higher subgrid-scale viscosity at tN and tC. The other situation occurs in
tO when the turbulent viscosity predicted by the AMD model is around two times higher
than by OE and five times higher than by WALE.
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Fig. 2.6: Turbulent viscosity νt [m2.s−1] in the mid-coronal plane at tN (left) and tC
(right).

Fig. 2.7: Turbulent viscosity νt [m2.s−1] in the mid-coronal plane presented at fully open
vocal folds.
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Fig. 2.8 shows turbulent viscosity fields in mid-sagittal plane. The simulation with
OE predicted twice higher turbulent viscosity located at vicinity of the inferior margin of
the vocal folds than others. The narrow barrier of turbulent viscosity at tN in the case
with AMD reduced the flow rate just by 0.8% (1 ml/s of air) compared to WALE.

Fig. 2.8: Turbulent viscosity νt [m2.s−1] in the mid-sagittal plane.

2.6 Summary of findings

This paragraph summarizes the major findings after performing four CFD simulations of
laryngeal flow based on various subgrid-scale models.

• Subgrid-scale turbulence model selection and configuration: The adjustment of
dynamic constant in the subgrid-scale turbulence model and damping functions is
not needed when the WALE and AMD models are used for the simulation of
wall-bounded flows. The models contain a prediction of turbulent viscosity
combining the strain rate and rotation rate tensor.

• Benchmark cases: The newly implemented AMD model has been subjected to two
tests. The normalized velocity profiles from simulations of turbulent flow within the
periodic plane channel were compared with DNS. The AMD model achieved better
agreement with the DNS curve than the conventional WALE model. However, the
second verification case showed that the AMD model has a tendency to overpredict
the mean velocity in the middle of the channel.

• Laryngeal flow rates: The simulation with AMD predicted by 5.1% lower, 11.6%
lower and 8.7% higher maximum than the WALE, LAM and OE models,
respectively. In the AMD and OE cases, the peak flow rate in the vocal fold
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oscillation cycle occurs noticeably sooner than with LAM and WALE subgrid-scale
models.

• Velocity fields: High value of the turbulent viscosity has a tendency to reduce the
airflow in the glottis and decrease intraglottal velocity. The simulation using the OE
model, which is known to overestimate the turbulent viscosity near walls, confirms
this statement.

• Vorticity fields: In the glottis was observed a significant reduction of vorticity
predicted by AMD compared to WALE and the other models. This finding
confirms the expectation that the AMD model is able to stop the production of
the scaled velocity gradient energy, and hence the minimum dissipation is kept to
a suitable range. This feature leads to the increased estimation of local turbulent
viscosity, which smooths the rotation of velocity.

• Turbulent viscosity: The simulation with the AMDmodel predicted the highest local
increase of the turbulent viscosity, identified directly before the glottal constriction
and partly on the sagittal walls. The OEmodel also predicts high turbulent viscosity,
expecially in the vicinity of the vocal fold margins and in the shear layer. The AMD
model contributed to less turbulence intensity in the glottis.
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3 CAA model of wave propagation
in vocal tract
Aeroacoustics deals with flow-induced sound generation and wave propagation. Sound

generation is caused by the turbulent motion of fluid, periodic varying flow fields, or
aerodynamic forces acting on solids. The sources in the case of human phonation are
commonly denoted as:

i. A monopole source term due to the motion of vocal folds (the term is zero when
the vocal folds are fixed).

ii. A dipole source term due to the unsteady force exerted by the surface of the vocal
folds onto the fluid.

iii. A quadrupole sound term due to the unsteady flow inside the vocal tract.

See (Zhao et al., 2002) for more details.

The numerical simulation of aeroacoustic effects can be performed either by using
direct simulations or hybrid methods. Direct simulation is based on the compressible
Navier-Stokes equations, which capture both the fluid dynamic and acoustic fluctuations.
The limitation of this approach is hidden in the computational effort associated with the
disparity of scales between the flow and acoustic variables (the small turbulent scales and
the large acoustic wavelength during common speech), which can reach several orders of
magnitude. To circumvent this problem, hybrid approaches are commonly used, where the
flow field and the acoustic field are computed separately (Bae and Moon, 2008; Schoder
et al., 2020; Lasota et al., 2021; Valášek, 2021). This work is also based on the hybrid
approach.
For simplicity, the overbars (·) from the LES filtering are dropped in the following

paragraphs and equations.

3.1 Aeroacoustic models

In this dissertation is used a hybrid method based on the incompressible flow
computation and utilizing a perturbation approach to obtain perturbation equations for
the aeroacoustic simulation.

3.1.1 Perturbed Convective Wave Equation (PCWE)

The acoustic perturbation equations form (APE-2) for isothermal and low Mach numbers
can be written as a system of three partial differential equations (Hüppe et al., 2014)

∂ρ′

∂t
+∇ · (ρ′u0 + ρ0u

a) = 0, (3.1)

ρ0
∂ua

∂t
+ ρ0∇(u0 · ua) +∇p′ = 0, (3.2)
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∂pa

∂t
− c20

∂ρ′

∂t
= −∂p

ic

∂t
, (3.3)

where the last equation has a source term. Combining (3.1), (3.3) and the equation of
state ρ′ = p′/c20 leads (after some manipulation) to

1

c20

(∂pa
∂t

+ u0 ·∇p′
)
+ ρ0∇ · ua = − 1

c20

∂pic

∂t
, (3.4)

and employing p′ = pic + pa the form results in

1

c20

(∂pa
∂t

+ u0 ·∇pa
)
+ ρ0∇ · ua = − 1

c20

(∂pic
∂t

+ u0 ·∇pic
)
. (3.5)

Next, (3.2) and (3.5) are modified. (3.5) is differentiated with respect to time, on (3.2) is
taken a divergence, and finally mean flows are neglected; after modifications the equations
result in the exact reformulation of APE-2

1

c20

∂2pa

∂t2
−∇ ·∇pa = − 1

c20

∂2pic

∂t2
. (3.6)

If the relation ua = −∇ψa is used in (3.2)

ρ0
∂(−∇ψa)

∂t
+ ρ0∇(u0 · (−∇ψa)) +∇pa = 0, (3.7)

then

∇
(
ρ0
∂ψa

∂t
+ ρ0u0 · ∇ψa − pa

)
= 0. (3.8)

The argument of the gradient is a constant, which can be set to zero, and results in the
acoustic pressure

pa = ρ0
Dψa

Dt
= ρ0

∂ψa

∂t
+ ρ0u0 · ∇ψa. (3.9)

Now, (3.5) can be rewritten using the substantial derivative to

Dpa

Dt
+ ρ0c

2
0∇ · ua = −Dpic

Dt
, (3.10)

and finally the relation (3.9) is inserted into (3.10), using ua = −∇ψa and multiplied
by 1/ρ0c20; a scalar-valued partial differential equation called Perturbed Convective Wave
Equation (PCWE) published first by Hüppe et al. (2014) is obtained

1

c20

D2ψa

Dt2
−∇ · ∇(ψa) = − 1

ρ0c20

Dpic

Dt
. (3.11)

The vector-valued APE-2 has been reformulated into the scalar PCWE, which can spare
computational resources avoiding the vector form. In this dissertation PCWE was used
in all cases, while following should be remembered:

• The sound sources are discussed in terms of Dpic/Dt, i.e. in dimension [Pa/s].
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• The wave propagation (3.11) contains the factor −1/(ρ0c
2
0) = −1/(1.025 ·343.252) =

−0.0000087 ms2/kg.

• From the solution of equation (3.11), i.e. ψa, the acoustic pressure pa [Pa] is
calculated according to (3.9). The convective term ρ0u0 · ∇ψa contributes only a
minor part to the solution, and thus pa = ρ0∂ψ

a/∂t is computed.

Benefits of PCWE are evident: faster computation with a scalar unknown, lower memory
requirements compared to the APE-x forms, includes convection inside the wave operator
and solves the acoustic quantity compared to Lighthill’s analogy (Lighthill, 1952).

3.2 Geometry and mesh

Fig. 3.1 illustrates the geometry used for aeroacoustic simulations, where from the left
side are: the PML layer at inlet (dark green), larynx (red), vocal tract (purple) and the
radiation zone protected by PML (green hollow cube). PML (Perfectly matched layer)
is a technique published first by Berenger (1994). The original method was modified by
Kaltenbacher et al. (2013) by adding damping layers to guarantee that no wave reflections
occur at boundaries.

Fig. 3.1: Geometry and mesh representation for the aeroacoustic simulation. This vocal
tract is in the shape for vowel /u/.

In this work five geometric models of vocal tracts were created. The models correspond
to vowels /u, i, A, o, æ/. Tab. 3.1 lists the lengths of vocal tracts of five English vowels.

Tab. 3.1: List of used vocal tracts (VT).
Phonetic symbol VT length [m] Nb. of segments Example of use

/u/ 0.1825 46 who [hu:]
/i/ 0.1667 42 heed [hi:d]
/A/ 0.1746 44 lock [lAk]
/o/ 0.1746 44 rock [rok]
/æ/ 0.1667 42 have [hæv]

The shape parameters of vocal tracts came from the study provided by Story et al.
(1996). The three-dimensional vocal tracts used in CAA simulations are shown in
Figs. 3.2-3.4 and were built in Gmsh.
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Fig. 3.2: Visualization of the acoustic mesh for /u/ (left) and /i/ (right).

Fig. 3.3: Visualization of the acoustic mesh for /A/ (left) and /o/ (right).

Fig. 3.4: Visualization of the acoustic mesh for /æ/.

The number of elements and nodes is listed in Tab. 3.2.

Tab. 3.2: Five computational meshes for the aeroacoustic simulation.

vowel elements nodes
/u/ 11,736 14,689
/i/ 11,256 14,077
/A/ 18,818 23,051
/o/ 18,818 23,051
/æ/ 18,484 22,567
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3.3 Boundary conditions

The partial differential equation (3.11) for the acoustic potential ψa, which will be solved
numerically in the acoustic domain, is equipped with zero initial conditions and boundary
condition

∇ψa · n = 0, (3.12)

where n is the outward unit normal. The boundary condition can be interpreted as a
perfect reflection of a sound wave from a barrier, also the condition is called ”sound
hard”. In these computations, the sound hard condition is applied at all boundaries
except the inflow and outflow, where PML is used.

3.4 Discretization and numerical solution

An open source 3D finite element mesh generator Gmsh (available online:
https://gmsh.info/) was used to build the computational mesh. The element length ∆la

of the acoustic mesh and time step ∆ta for the aeroacoustic simulation are given by
estimations (Hüppe, 2012)

∆la ≤ c0
20fmax

= 3.43 mm, ∆ta ≤ 1

20fmax

= 1 · 10−5 s, (3.13)

assuming that 20 linear finite elements per one acoustic wavelength are sufficient. In
this case, the spatial discretization is limited by 3.43 mm and time step by 1 · 10−5 s
in order to resolve properly acoustic frequencies up to fmax = 5 kHz. If the condition
is not satisfied, then the acoustic results are affected by high dissipation and dispersion
(Kaltenbacher, 2018). The acoustic material properties in simulations are defined by the
density ρ = 1.11703 kg.m−3, the bulk modulus K = 0.1156 MPa and the speed of sound
c0 = 343.25 m.s−1.
The numerical solution (workflow) can be separated into three steps:

• The unsteady flow field in the larynx is computed in OpenFOAM on a fine CFD
mesh over 20 periods of vocal fold oscillation.

• The aeroacoustic sources in the larynx are computed by OpenCFS, and
conservatively interpolated on the coarse CAA mesh.

• In the last step, the wave propagation is simulated by OpenCFS on the coarse CAA
mesh.

The computational time needed for one CAA simulation is much lower than for one
CFD simulation, about five hours on a single CPU core compared to 34 days on 20 cores.
But it should be noted that five CAA simulations have been computed on top of each of
the CFD simulations. Altogether, four CFD simulations and 20 CAA simulations have
been performed in this work. The conservative interpolation of the sound source from
the very fine (2.2M) CFD mesh to the coarser (11k-18k) CAA mesh was performed by
the cfsdat tool (part of the OpenCFS). The work of Schoder et al. (2020) contains an
overview of the conservative strategies, granting a reduction of the simulation time.
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3.5 CAA results

3.5.1 Visualization of sound sources in the time domain

The distribution of the aeroacoustic sources in the computational domain covering the
larynx varies throughout the vocal fold oscillation period. Fig. 3.5 shows the
aeroacoustic source field while the vocal folds are in the closed-divergent position. The
jet is surrounded by spots of strong positive and negative acoustic sources related to
turbulent eddies created from shear layers of the jet.

Fig. 3.5: Aeroacoustic source term (Dpic/Dt) from (3.11) at closed-divergent vocal folds
positions during phonation. Twenty iso-surfaces in the range ±2 · 105 Pa/s are shown
(positive-purple ones, negative-green ones).

3.5.2 Visualization of sound sources in the frequency domain

The conversion from the time to frequency domain was made by the field Fast Fourier
Transform (field FFT), which brings useful insight into the spatial distribution of the
aeroacoustic sources at distinct frequencies related somehow to human phonation.
Fig. 3.6 shows the 3D spatial distribution of sound sources in the supraglottal volume

at f = 1000 Hz and f = 1235 Hz. At the non-harmonic frequency the acoustic sources are
distributed further downstream. The integrity of sound sources can be observed, along
with several local sound spots at the superior (trailing) edge of vocal folds.
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Fig. 3.6: 3D spatial distribution of the PCWE source term at the harmonic frequency
f=1000 Hz and the non-harmonic frequency f = 1235 Hz.

3.5.3 Wave propagation in the frequency domain

This section deals with frequency spectra. This kind of analysis can highlight fundamental,
harmonic and non-harmonic frequencies, accompanied by background noise. The FFT
analyses were performed on the signal of 20 periods of the vocal fold oscillation (1 period
= 10 ms = 1000 samples), and thus the frequency resolution is ∆f = 5 Hz. The spectra
will be analysed vowel by vowel.
Vowel /u/. Fig. 3.7 shows aeroacoustic spectrum based on the CFD simulation with

different subgrid-scale models. SPL at fundamental frequency fo = 100 Hz and higher
harmonics f1 = 200 Hz, f2 = 300 Hz and so forth, are well visible, but SPL at fo is
lower than at f1 and f2. Unfortunately, this trend is in contrast with the acoustic theory,
meaning the oscillation of vocal folds is simultaneously the dominant frequency in the
spectrum. Scientific groups (Falk et al., 2021; Schoder et al., 2020) report the same
unbalance with the first harmonic Lf1 higher than Lfo . The second formant computed
by the simulation with AMD is higher by 22% compared to the case with WALE. At the
third formant, on the contrary, WALE is higher by 28% than AMD. This trend occurs
only for vowels /u, A/, even though the vocal tracts for /u, A/ have very different shapes
(see Fig. 3.4).
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Fig. 3.7: Acoustic sound spectra from the numerical simulation of vocalization of /u/ at
monitoring point MIC 1.

Vowel /i/. Fig. 3.8 shows the second aeroacoustic spectrum. The simulations with OE
performed on vocal tracts /u, i/ predict the lowest SPL at the fundamental frequencies.

Fig. 3.8: Acoustic sound spectra from the numerical simulation of vocalization /i/ at
monitoring point MIC 1.

Vowel /A/. Fig. 3.9 shows that SPLs at fundamental frequency remain at the same
level for all models. This happened only twice, in cases /A, æ/ for open and mid-open
vowels, when the tongue is pressed down most. The close distance between formants
F1 − F2 is typical for vowels /u, A, o/, but in the simulation of /A/ the second formant
around 1300 Hz was not detected. However, in the case of AMD, it appears that the
second formant may be found. On the other hand, the third formant is clearly visible
and presents the same behavior as in /u/, i.e. a 9-13 dB lower value of AMD compared
to WALE and LAM.
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Fig. 3.9: Acoustic sound spectra from the numerical simulation of vocalization of /A/ at
monitoring point MIC 1.

Vowel /o/. Fig. 3.10 shows the aeroacoustic spectrum with the widest passage of the
throat (7.25 cm2) during phonation. The simulation with the AMD model predicted the
first formant around 900 Hz and SPL around 64 dB. At 30 cm, the value would reach
34 dB.

Fig. 3.10: Acoustic sound spectra from the numerical simulation of vocalization of /o/ at
monitoring point MIC 1.

Vowel /æ/. Fig. 3.11 shows the aeroacoustic spectrum for the vocal tract /æ/, which
transfers most acoustic energy – 70 dB with the AMD model, 66 dB with the WALE
model. The first formant predicted by AMD is by 14 dB higher than the formant predicted
by the WALE model. The formants in the high-frequency bandwidth are on the same
level for AMD and WALE. For all vowels except /æ/, at 600 Hz was detected a significant
drop in SPL.
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Fig. 3.11: Acoustic sound spectra from the numerical simulation of vocalization of /æ/.

3.6 Summary of findings

Analysis of the CAA simulations leads to the following important conclusions:

• For all vowels, the results of aeroacoustic simulations based on the AMD model have
strongest SPL of higher harmonic frequencies up to about 2000 Hz. For frequencies
between 2000-3000 Hz, the strongest harmonics are predicted by the WALE model.

• For all vowels, the usage of the AMD model leads to the stronger second formant,
whereas the WALE model results in the stronger third formant.

• For all vowels, SPL at 100 Hz was lower than at higher harmonic frequencies. In
the case with close-front and close-back vowels this might be an effect of the first
formant, but in cases with mid/open and open vowels, when the first formant is far.

• Simulations of phonation including vowels /A, æ/ computed higher SPL compared
to vowels /u, i, o/. This could be explained by greater vocal tract passage before
lips.

• The subgrid-scale model did not have any influence on the location of the formant
frequencies.
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4 Conclusion
Large-eddy simulations of laryngeal incompressible flow with no subgrid-scale model

(LAM) and with various of subgrid-scale models were performed, namely: One-Equation
(OE), Wall-Adaptive Local-Eddy viscosity (WALE) and the newly implemented
Anisotropic Minimum-Dissipation (AMD) (2.23) model. The AMD model was tested on
benchmark cases prior to use on the laryngeal flow.
CAA simulations of the aeroacoustic sources and wave propagation during human

phonation of five vowels /u, i, A, o, æ/ were performed. The simulations were based on
the hybrid approach using decomposition of the flow variables. The perturbed convective
wave equation (3.11) was used in all cases.
Numerical results obtained from CFD and CAA simulations were discussed separately

in summaries of findings (Chaps. 3.6, 2.6). The concluding assessment regarding the usage
of SGS models in numerical modelling of human phonation can be formulated as follows:
The OE model overpredicts the turbulent viscosity in regions where shear is dominant,
i.e. in the boundary layer adjacent to the vocal folds and in the shear layers of the glottal
jet (Figs. 2.8, 2.7, 2.6). The difference in glottal flow rate among the simulations is clearly
induced by the subgrid-scale model, which adds the turbulent viscosity to the molecular
viscosity of air and hinders the airflow in the glottis (Fig. 2.2, Tab. 2.4). The WALE
model produced zero eddy viscosity in cases of pure shear flow (Figs. 2.8, 2.7, 2.6), and
hence the flow simulation with WALE predicted by 5% higher maximum transglottal flow
rate than AMD (Fig. 2.2, Tab. 2.4). Despite of this fact, the phonation simulation based
on the AMD model transferred more energy in terms of total sound pressure level than
WALE for all vowels except the front-close vowel /i/.
The WALE model, which is known to handle turbulent viscosity at the near-wall and

high-shear regions more precisely than the OE model, resulted in higher SPLs than OE
in all cases except the close-back vowel /u/. The OE model gives acceptable results in
general, but peaks of frequency formants are hardly visible and weaker compared to the
WALE or AMD model. The WALE model amplified third formants in high-frequency
bandwidth most of all the models (Figs. 3.7-3.11). Hovewer, the third formant is not
crucial for vowel characterization.
The AMD model seems to be a very promising successor to the WALE model in

modelling laryngeal flow, since the AMD model resulted in significantly higher harmonic
frequencies up to the second formant for all studied cardinal vowels (Figs. 3.7-3.11). This
finding could be related to known features of the AMD model: consistency with the exact
subgrid-scale stress tensor τij, no requirements on the approximation of the filter width
∆ and usability on an anisotropic mesh. This thesis represents the first application of the
AMD model in the field of human phonation.
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