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Annotation 

This thesis presents a novel approach to the remote detection of chemical information by compressing the 

hyperspectral information directly during the measurement. This was enabled thanks to a novel technique 

developed on a single snapshot called coded aperture snapshot spectral imaging (CASSI). Using a coded 

aperture allows the implementation of a modern signal processing technique based on an algorithmic 

strategy – compressed sensing. This method can capture complete hyperspectral information in a single 

instance without scanning, which yields a significantly higher optical throughput compared to its scanning-

based counterparts. By using the CASSI system, it is possible to retrieve the information faster than by a 

traditional system, using a relatively simple optical setup. In this thesis, the method was extended in order 

to perform hyperspectral imaging on a broad spectral range in the infrared region. 

Keywords: hyperspectral imaging, compressed sensing, coded aperture 

 

 

Anotace 

Tato práce představuje nový způsob získání chemické informace na dálku s kompresí hyperspektrální 

datakrychle přímo v průběhu měření. Toho je docíleno díky nové technice založené na jediném snímku z 

detektoru, tak zvané CASSI (Coded Aperture Snapshot Spectral Imaging). Kódovaná apertura umožňuje 

implementovat moderní techniku zpracování signálu s použitím algoritmu – komprimované snímání. Tato 

metoda je schopna zachytit kompletní hyperspektrální informaci v jediný okamžik bez nutnosti skenování 

a dosahuje daleko větší optické propustnosti než její standardní, na skenování založené protějšky. Použitím 

CASSI je možné získat měřenou informaci rychleji než pomocí tradičních systémů, s použitím relativně 

jednoduchého optického uspořádání. V této práci byla CASSI metoda vylepšena pro možnost 

hyperspektrálního zobrazování na širokém spektrálním rozsahu v oblasti infračerveného spektra.  

  

Klíčová slova: hyperspektrální zobrazování, komprimované snímání, kódovaná apertura 
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Introduction 

Our vision is an extraordinarily complex and astonishing system, and we depend on it as a primary source 

of gathering information about our surroundings. Nevertheless, it has limitations in imaging very tiny or 

distant objects, and we are constricted only to three spectral channels in the visible spectra. Observing nature 

and developing optical systems over the centuries taught us that there is always something new to discover 

and far more information around us than we are able to grasp with our senses, whether it is gravitational 

waves or trillions of neutrinos permeating you at this very second. In fact, the amount of information around 

us is so vast that for the human brain to process it, it is designed to filter even the limited visual data captured 

by our eyes. Seeing broad spectral range, e.g., in the infrared (IR) region with fine spectral resolution would 

allow us to remotely sense chemical composition [1]. This is what hyperspectral imaging (HSI) does. HSI 

denotes methods that are able to capture both an image and a spectrum of light in each pixel of the scene. 

Such a dataset provides us with immense information about the measured scene, which cannot be obtained 

by any other means. Therefore, IR HSI has been a very lively topic in the last decades [1, 2, 3, 4, 5]. 

Within this field, most studies are focused on the near IR spectral region because it is possible to 

use common optical elements and germanium detectors or detectors on an InGaAs basis. However, the 

implementation of HSI in the middle and far IR spectral region is problematic due to the need to use 

“exotic” optical materials and detectors with high noise levels. HSI is very demanding regarding the 

acquisition time, computing power, processing, and storing the information. Moreover, in conventional 

signal processing, one is limited by the Nyquist-Shannon sampling theorem, which states that in order to 

reconstruct a signal faithfully, the sampling frequency must be at least twice as large as the highest frequency 

in the signal [6]. 

A possible solution to these problems is utilizing the compressed sensing (CS) method [7]. It is 

possible to reconstruct a sparse signal sampled at a rate less than the one restricted by the Nyquist-Shannon 

criterion through constrained 𝑙1 minimization [8]. This approach was used in the 1970s in reflection 

seismology for constructing images of layers within the earth [9]. CS is invaluable for cases where there is a 

need to acquire huge datasets, such as in HSI. An impressive demonstration of the acquisition of an 

extensive amount of data and the CS uniqueness can be found in [10], where the authors were able to attain 

as many as 70 trillion frames per second. One of the methods that combine HSI with CS techniques is the 

so-called CASSI (Coded Aperture Snapshot Spectral Imaging) [11, 12, 13]. The CASSI technique is the 

central method of this thesis. 

The two main components of the CASSI setup are a dispersive element and a coded aperture, which 

is a random pattern – typically a binary one. The random pattern, or in other words, a random mask, encodes 

the image information for every wavelength and a dispersive element shears the image spectrally on the 

detector. The resulting image is then used for reconstructing the hyperspectral information back. The unique 

advantage of CASSI is it does not need to scan the scene. All the hyperspectral data are captured in a single 

instance. However, since the CASSI method relies on one snapshot on a detector, the compression of the 
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hyperspectral data is enormous. This limits the use of this method on a small number of spectral slices, 

which often implies the acquisition of a narrow bandwidth [12, 14]. Hence, an improvement of this method 

is on the spot.  

This thesis describes our aim to improve the potential of the CASSI method by using various 

approaches to improve the compression ratio and reconstruction quality. The approaches are evaluated both 

in an experimental way and in realistic simulations, which test their utilization for the IR HSI. 

The first chapter is devoted to the theoretical fundamentals necessary to understand the 

experimental part of this thesis. The second chapter provides an overview of the state of the art and 

applications. Also, there are mentioned objectives of this work. From the third chapter onward, starts the 

experimental part of my work. This includes characterization of our optical system, data processing, and 

reconstruction. Chapters 4, 5, 6, and 7 describe the modifications of CASSI and evaluate the utilization of 

the method in the IR spectral region. Chapters 4-6 also give more insight into the articles I have written and 

are attached at the end of this thesis. The results in Chapter 7, exploring the potential of an enhanced CASSI 

system for IR HSI, are yet to be published. Chapter 8 summarizes the work carried out within the thesis. 

For the reference purposes, in this thesis summary, I keep the same numbering of the main chapters 

as in the thesis. Figures, Tables, and Equations are denoted here with capital letter S. 
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1 Theory: the pieces of the puzzle  

In the thesis, this chapter is devoted to the essential aspects needed to understand the CASSI technique, 

which I have been using throughout the thesis. It begins with a brief description of hyperspectral (HS) 

imaging with a focus on the infrared (IR) spectral region. It continues with an introduction to compressed 

sensing and the associated method CASSI, showing the fundamentals, characteristics, and limitations. 

Finally, it presents metrics to assess the HS datacube quality. 

 

 

2  State of the art 

2.1 Current challenges in hyperspectral imaging 

In contrast to the standard RGB imaging, by hyperspectral imaging (HSI), we obtain spectral information 

in addition to the 2D image. The spectral information can be exploited in various ways – for instance, to 

identify the chemical composition. From the principle of this method, it is evident that one acquires a 

massive amount of information (see Chapter 1.1 in the thesis). This naturally affects the acquisition times, 

which could be in the order of seconds to hours to acquire the complete information, depending on the 

required spatial and spectral resolution and the method used [15]. 

An integral part of most hyperspectral instruments is the moving part required to scan the imaging 

scene, which is one aspect of the complexity of these instruments. It is also necessary to mention the low 

efficiency of radiation utilization. For example, in a line scan, a large part of the light intensity is filtered out 

by the slit used, or in a plane scan, the light is filtered out using a narrow bandpass filter. So, the better the 

spectral resolution one wants, the worse the use of light is. 

Recording, storing, and processing hyperspectral information is very demanding in terms of 

acquisition time, storage capacity, and computing power. For example, in the realm of earth remote sensing, 

there are freely accessible data from the AVIRIS instrument [16]. It is an optical sensor that provides 

calibrated images of the spectral radiance in 224 spectral channels. Typically, the file size of these data is 

several GB. Therefore, the traditional classification techniques cannot be directly applied to the HS data, 

and modification is needed [17]. In addition, the need for using complex optics, and thereby the high 

purchase price, plays a role here. 

Figure S1 Photos of a laser pulse being reflected on a mirror, scale 10 mm. Adapted from [18] 
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Moreover, as we measure a scene pixel by pixel for very fast phenomena, we are limited by the 

acquisition time. A possible solution to most of these problems is the use of compressed sensing techniques, 

specifically the CASSI method (see Chapter 1.4 in the thesis). For example, Gao et al. [18] accomplished to 

capture events happening on the order of tens of ps – a reflection of a laser pulse on a mirror (Figure S1).  

2.2 CASSI 

Thanks to CASSI, one does not need to scan the scene because the method is based on only one image 

from the camera, i.e., a single snapshot. It is captured in a single moment, and this image is much smaller in 

size than the entire hyperspectral datacube. Then it is possible to reconstruct the scene back thanks to the 

knowledge of the random mask and that common images are sparse. A random mask is a binary pattern 

resembling QR code (see Figure S2). By not having to use a slit or narrow bandpass filters as in the standard 

hyperspectral approaches (see Chapter 1.1 in the thesis), the utilization of light is significantly improved, 

which is absolutely critical for real-world applications. Also, naturally, there are no scanning artifacts. In 

Fourier-transform infrared spectroscopy, the optical throughput gained compared to the standard 

spectrometers using slits is called the Jacquinot advantage [19]. Similarly, using snapshot imaging in HSI, 

the throughput improvement in comparison to the scanning-based systems is referred to as the snapshot 

advantage [20]. 

However, for a wide spectral range, taking only one snapshot brings in a large compression between 

the data recorded on the detector and the hyperspectral datacube we want to reconstruct. This issue is 

typically overcome by limiting the sensing to a narrow spectral width (100-190 nm) [12, 14], which is 

discretized to a relatively small number of wavelength regions (25-28 spectral slices). It is, in fact, very 

counterproductive. For example, if we are trying to detect the absorption spectrum of a chemical substance, 

we need a much finer wavelength resolution for its characterization. For instance, measuring on a spectral 

range of 8-14 µm, 28 spectral slices would provide a resolution of only approximately 214 nm. In this way, 

any sharp absorption peaks of a chemical compound would be undetected. The standard CASSI also 

exhibits limitations in image quality for complex scenes and the time needed for the hyperspectral datacube 

retrieval, which can reach as long as 14 minutes [12] since the reconstruction problem is severely 

underdetermined. 

Figure S2 An illustration of the spectral optical flow in CASSI and an 
example of a QR code resembling random mask pattern. Adapted from [13] 
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Attempts to improve the reconstruction quality and the compression ratio are usually implemented 

using multiple snapshots of the same scene [21, 22, 23, 24, 25], while some of them also try to optimize the 

coded aperture [23, 24, 25]. But then, the CASSI method loses its uniqueness in recording the hyperspectral 

data in one instance. Moreover, some advanced modulator to change the random mask pattern is required, 

or the optimized masks are spectrally selective. There was also an effort to use a higher-order discretization 

model image for reconstruction [26]. However, the used complex model describing the detector increases 

the computational demands highly, as it calculates with 170 spectral bands instead of 8. 

A promising way to enhance the CASSI performance is to capture a non-diffracted image of a scene 

that provides more knowledge about the measured scene [14, 27, 28, 29, 30]. Nevertheless, attaining the 

non-diffracted image requires splitting an incoming beam, and a second detector is needed, which makes 

the optical system even more complex. The light splitting can reach as much as 50% intensity loss in the 

measured spectrally sheared image [27].  

In addition, due to the use of a random mask that encodes the image for each wavelength, the 

imaging quality of the system is critical in the whole measured spectral range. It is needed to attain the image 

without distortion or chromatic aberration to obtain good-quality reconstruction in the standard CASSI 

experiment. Otherwise, these discrepancies would lead to wrongly encoded information, and it would 

subsequently cause problems in reconstruction. It is easily feasible in the visible spectral region, where 

various complex lenses corrected for aberrations are available off-the-shelf. However, in the IR spectral 

region, this is more challenging. Complex IR optical systems are costly, and their adjustment is highly 

demanding.  

Another criterion, which is essential for using CS in HSI, is the time required to reconstruct 

hyperspectral data. This information is usually intentionally not stated in the literature. An example of a rare 

case where the computational times are present is Ref. [12]. Here the authors declare that for 100 iterations 

of the reconstruction algorithm, a time of 14 minutes on a desktop PC was required (datacube with 

dimensions of 128×128×28 pixels, spectral range 540-640 nm). The authors do not explicitly state how 

many iterations were needed for the overall data reconstruction. Nevertheless, assuming the reconstruction 

was restricted to 100 iterations, the time required is still not suitable for real-life processing. The same group 

in Ref. [31] demonstrated the ability to capture 248×248×33 datacubes at video rates (30 fps). The catch is 

that the postprocessing took several hours of computing time to reproduce the video datacube sequence. 

Based on the above-listed shortcomings, Chapter 2.4 sets out the objectives of this thesis. 

2.3 Application of HSI and CS 

In this chapter, only a few selected applications of hyperspectral imaging and compressed sensing will be 

mentioned. Since these are very broad topics ranging from agriculture to medical applications, it highly 

exceeds the scope of this work. 

Thanks to the conventional HSI, it is possible to noninvasively determine the quality of food [5, 32] 

and drugs [33]. It is utilized in many applications ranging from scientific research, such as imaging the 

chiralities of single nanotubes [34] or volcanology [3], to real-world problems involving medical imaging 
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[35], food analysis, and safety inspection [36, 37], forensic sciences [38, 39], criminology [40], art 

conservation [41], or agriculture [42].  

These applications typically employ the IR spectral region, as each chemical has a particular 

absorption spectrum in this region. A broad range of application fields leads to extensive research in IR 

HSI. Compared to the HSI "mainstream," the exploitation of CS in HSI is far more seldom. It focuses 

mainly on the VIS-NIR spectral region because it is easily manageable in the sense of optical elements and 

detectors' availability, alignment, etc. The VIS-NIR applications will not be mentioned in this brief summary 

since we are mainly interested in longer wavelengths.  

Our main interest lies in MIR and LWIR, which are commonly used abbreviations for the spectral 

ranges of 3-8 µm and 8-15 µm, respectively. Note that the delimitation of these ranges slightly varies 

throughout the literature. To mention a few from the MIR and LWIR spectral regions, Ref. [43] from 2021 

provides a proof-of-concept optical setup operating on 3-5 µm, which is able to capture a hyperspectral 

datacube of 64×48×100 with the acquisition time within one minute. It uses a digital micromirror device 

(DMD) for spatial encoding, which has to be modified to operate in the MIR spectral region. To the best 

of my knowledge, this is the only existing work on MIR hyperspectral imaging based on compressed sensing. 

Regarding LWIR, there are very few publications [44, 45, 46], but note that the list might not be exhaustive. 

References [44], [45], and [46] all present a LWIR hyperspectral imager using single-pixel detection 

technology, which collects all three dimensions on a single detection element. However, the experimental 

results are very limited. To this day, I was not able to find any work regarding LWIR CASSI. 

2.4 Objectives 

Here we will set the main objectives and goals that triggered the work in this thesis. The overall goal is to 

localize and distinguish between different chemical substances in the IR spectral region. Therefore, we aim 

to obtain HSI in a broad spectral range covered with many (up to 100) spectral frames. This is in contrast 

to previous CASSI reports, which used narrow spectral width and limited spectral resolution. The studied 

HS camera operating in the VIS spectral range served as a model system for testing the real-life CASSI 

datacube retrieval and for an outlook of IR CASSI imaging. 

This is to be done by keeping the following points: 

(1) We aim to retain only one snapshot or, to be more precise, capture all the information in one 

instance since it is the main advantage of CASSI. Also, we want to keep the optical system as simple 

as possible, i.e., not using a second detector nor any advanced light modulators. 

(2) The demand for reconstructing real-life complex datacubes implies that we need to improve the 

compression ratio of the measurement. 

(3) We aim at using a relatively simple optical system suffering from certain optical aberrations, which 

can potentially also be created in the IR spectral region. 

As we show in the following sections, we reached the set objectives by modifying the optical setup 

while retaining the simplicity of the system. And more importantly, it leads to a significant improvement in 

compression ratio and consequently also the retrieved datacube quality. The simulations of our modified 

setup demonstrate the feasibility of such a system in the IR spectral region. 
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3 Experimental part: putting it together 

The experimental part of this thesis is devoted to the description of our experimental setup, its parameters 

(including spectral efficiency and aberrations), and the modifications that were necessary to push the limits 

of the CASSI method. There are also discussed the data processing, calibration, simulations, estimation of 

an initial guess, and reconstructions that were performed using Matlab. As a reconstruction algorithm, we 

use TwIST (Two-Step Iterative Shrinkage/Thresholding) [47] for image restoration during the 

reconstruction. 

The following chapters provide a short overview and give more insight into the papers that are a 

part of this thesis. They constitute an extensive portion of Chapters 4-6. Chapter 7 evaluates the 

effectiveness of the CASSI extensions made within this work for hyperspectral imaging in the IR spectral 

region. 

 

 

4 Evaluation of using standard coded aperture imaging in 

the IR region 

This chapter provides a short overview and more insight into the paper Evaluation of using coded aperture 

imaging in the mid- and far-infrared region [48].  

The central goal of this paper was to test the feasibility of using the standard CASSI method in the 

IR spectral region. We performed numerous reconstructions of artificial hyperspectral scenes, which 

included a spill of a chemical agent. Implementation of CASSI operating in the IR would enable less 

expensive and simpler construction of HSI devices. 

The simulations included a simple and complex scene, illumination by black-body radiation, and the 

effect of noise on the reconstruction quality. Several different sizes of the random mask (32x32 – 

512x512 px) were evaluated as well as a different number of spectral slices (117-470) and varying 

concentrations (100-2000 ppm-m) of the chemical compound. The number of spectral slices reflects the 

spectral resolution, while varying the concentration impacts the intensity at specific spectral slices in 

proportion with the absorption spectrum of the chemical.  

Throughout Chapter 4, we employed the standard CASSI method. 

4.1 Reconstructions 

The reconstructions were performed using the TwIST algorithm [47]. It recovers the datacube from the fed 

detected image, and subsequently, we can extract the absorption spectrum of the chemical agent. In order 

to correctly determine the chemical agent and its concentration, the relative intensity and position of the 

peaks are important factors. 
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4.2 Results and discussion of Chapter 4 

We obtained a reasonable agreement between the original and reconstructed spectrum – see Figure S3A. 

The data shown are for a datacube dimension of 128×128×470. The reconstructed spectra were obtained 

as a mean value of the central part on the position where the chemical was originally located. From Figure 

S3D, it can be seen that the highest intensity stripe in the upper part of the original image in Figure S3B was 

partially restored. We can as well, at a very rough guess, estimate where the chemical compound is located 

– compare the dark part with Figure S3C. Yet, the resemblance is very coarse, and we cannot talk about any 

resolution of finer details. It is worth noting that the data shown in Figure S3A-D are without any noise, 

and even 1% of the noise level (approx. 43.5 dB) added to the detected image seriously impacts the 

reconstruction (Figure S3E-F). 

In other words, our results suggest that the standard CASSI could potentially determine the type of 

chemical agent and solely roughly localize it only for the ideal case, i.e., without any noise. Therefore, to 

make CASSI work in the IR spectral region, there is a necessity for an upgrade of the method. 

 

 

Figure S3 (A) Original (red) and reconstructed (blue) spectra of data without noise. 
(B) Original scene. (C) A slice of the original datacube with the most prominent 
absorption in the central part. (D) A slice of the reconstructed datacube without noise. 
(E) A slice of the reconstructed datacube with 1% of noise. (F) Original (red) and 
reconstructed (blue) spectra of data with 1% of noise. Adapted from [48] 
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5 Extension of CASSI by a zeroth-order image 

This chapter provides a short overview and more insight into the paper Enhancement of CASSI by a zero-

order image employing a single detector. [49] 

In order to improve the reconstruction fidelity, there was a need to find a way to gain more 

information about the measured scene. As mentioned previously (Chapter 2), one way to improve the 

CASSI method is to capture the non-diffracted image on a second detector [14, 27, 28, 29,30]. However, 

this modification makes the imaging system more complex, and since it typically includes a beam splitter, it 

causes a substantial loss of light intensity, which could reach as much as 50% [27].  

A significantly better approach to keep the simplicity of the system is to utilize the zeroth-order 

(ZO) diffraction arising from the diffraction grating. This image is inherently present in the systems 

employing a diffraction grating, but its use has not been reported for the CASSI experiment. Nevertheless, 

for the realization of this idea, some changes to the HDES system [50] had to be made – see Chapter 5.1 in 

the thesis. 

The results presented in this chapter, as well as in the paper [49], are derived from the upper image 

created by the double lens (see Chapter 6 and Figure S6).  

5.1 ZO enhanced CASSI measurements 

Using our modified CASSI system, we measured several different testing scenes illuminated by a 

monochromatic light source (Nd:YAG laser, 532 nm), a red diode, or a broadband quartz tungsten-halogen 

lamp (Thorlabs). In Figure S4, on the left, there is an example of two detector images. The upper one is for 

Figure S4 (A) Detector image of an opaque cross illuminated by a green laser and a 
red diode, and  (B) illuminated by a broadband light source. The FO of diffraction is 
on the left, the ZO of diffraction is on the right. Images resolution is 600×2260 px 
(C) Measured spectra of the green laser and the red diode, and (D) the broadband light 
source. 
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an opaque cross illuminated by a green laser and a red diode, and the bottom one is for the same cross but 

illuminated by a broadband light source. The spectra of the used light sources are shown in Figure S4C-D. 

The FO of diffraction is on the left, while the ZO of diffraction is on the right. Note that in the ZO image, 

a random mask pattern is apparent for both scenes. Whilst in the FO image, it can be identified only for the 

scene illuminated by green laser light and a red diode – Figure S4A. In this case, the spectral shearing is not 

so prominent, contrary to a broadband light source – Figure S4B. 

5.2 The effect of using the ZO 

The TwIST algorithm [47] used for reconstruction enabled us to feed an initial guess (Chapter 3.2.3 in the 

thesis) of the datacube, so we do not have to start from a trivial guess implemented in the algorithm [49]. 

We tested the use of the ZO on the quality of the reconstruction by employing the ZO (i) in the initial guess 

only; (ii) in the reconstruction itself only; (iii) in both the initial guess and the reconstruction; and (iv) without 

using the ZO at all. 

The results summarized in Figure S5 for the cross illuminated with a broadband light show that 

capturing and utilizing the ZO has a tremendous effect on the spatial quality of the reconstructed datacube. 

Each quadrant in Figure S5 depicts selected spectral slices at different wavelengths and an overall spectrum 

of the reconstructed scene for four different approaches to using the ZO image. Panel A shows 

reconstruction by the standard CASSI method; panel B has a ZO-assisted initial guess along with a standard 

CASSI reconstruction; panel C comprises using the ZO only in the iterative part of the TwIST 

Figure S5 Reconstructions of the scene from Figure S4B; each selected spectral slice is 
normalized to the maximum datacube value, color bar is on the right. (A) Not using 

ZO; (B) using ZO in initial guess only; (C) using ZO in operator �̂� only; (D) using 

ZO both in initial guess and operator �̂�. – Adapted from [49] 
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reconstruction; panel D includes the ZO knowledge in both the initial guess and the datacube 

reconstruction. 

It is noticeable that without using the ZO – Figure S5A, the CASSI method struggles to restore 

vertical features in the scene. It is caused by spectral shearing (see the FO image in Figure S4B), which 

significantly diminishes the restoration of the perpendicular lines of the scene. This effect is more prominent 

for the measurements of broader spectral regions with many spectral slices where the compression ratio is 

low. Reconstructed datacube slices in Figure S5C show the significance of having a reliable initial guess. The 

algorithm was not able to restore the opaque cross correctly in all the slices. The use of ZO in the initial 

guess is highly improving the spatial quality of the reconstructed datacube, as can be seen in Figure S5, 

panels B and D.  

But even for the most accurate reconstruction in Figure S5D, where ZO is used for both the 

datacube initial guess and retrieval, the overall spectrum below 500 nm does not resemble the actual one. 

In this spectral region, the intensity should be equal to zero because of the used cut-off filter. 

To some extent, the spectral similarity can be enhanced by using a higher regularization parameter 

𝜏, which promotes sparsity (see the thesis for details), as we describe in Ref. [49]. 

5.3 Conclusion of Chapter 5 

The presented extension of the CASSI method was constructed with a limited number of optical elements 

based mainly on off-the-shelf optics. It can be employed for systems exhibiting low compression ratios and 

suffering from aberrations, especially if there is a need to preserve the system's simplicity. The proposed 

modification of CASSI is unique in the sense that it enables to capture a spectrally dispersed image of a 

scene as well as a nondispersed one on the same detector.  

We measured different scenes on a broad spectral range (500–900 nm) and observed the effect of 

including the nondispersed scene image in the reconstruction as well as optimizing the reconstruction 

parameters. For instance, the regularization parameter 𝜏, which promotes sparsity, has a significant effect 

on the reconstruction quality. Low values of 𝜏 enhance spatial quality, while high values improve spectral 

similarity.  

The modification led to improved overall reconstruction quality and an approximately five-fold 

reduction in computational time. Note that the improvement of results is not only because of the higher 

compression ratio but also because of obtaining more spatial information – we can set the initial guess very 

close to the original scene. These effects are more prominent for complex scenes. 

The real data findings were confirmed by simulations (see Chapter 5.4 in the thesis) utilizing rigorous 

analysis of aberrations, which provided us with quantification of the quality of the results. 
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6 Extension of CASSI by double projection and 

differential coded aperture 

An important factor limiting the quality of retrieved data via compressed sensing is the so-called 

compression ratio, i.e., the number of measured data points with respect to the number of elements of the 

reconstructed dataset. A hyperspectral datacube with dimensions of 64×64×123 px will have a spectrally 

sheared imprint of 64×186 px on the detector. The compression ratio (CR) is, in this case, 11904/503808 

≈ 2.4%. Using the upgrade from the previous chapter, the CR increases to 16000/503808 ≈ 3.2% since the 

detector image is now extended by the 64×64 px zeroth order. A significant improvement in the 

reconstruction quality was achieved. However, the aberrations still limit the reconstruction of complex 

scenes.  

Another way to amplify the performance of CASSI is to take multiple snapshots of the same scene 

[21, 22, 23]. Yet, in this way, the CASSI system needs some advanced modulator (such as DMD – Digital 

Micromirror Device) in order to change the random mask pattern. Furthermore, it loses its main advantage 

of capturing the whole scene in a single instance. Hence, the question is: how to take more snapshots while 

keeping the simplicity of the system? 

A solution is to project the scene in parallel with two lenses through two different random masks 

at the same time. The proof of concept is presented in the paper Improving Compression Ratio in CASSI 

[51]. Chapter 6 in the thesis explains in detail the question: how to take more snapshots while keeping the 

simplicity of the system? Also, the modification of the optical system for double projection and the 

effect of random mask complementarity are described. Further, simulations confirming the findings of 

real-data reconstructions are presented along with evaluation metrics of retrieved datacubes for different 

scenes and utilizing random masks of higher dimensions. At last, a comparison of reconstructions using 

different algorithms is shown. See the thesis for more details. 

6.1 Differential CASSI measurements and approaches to data processing  

Chapter 6.3 in the thesis showed that complementary masks are the best option for a double-mask CASSI 

system. Following these findings, the experimental implementation was carried out only for the 

complementary random masks. In particular, we used two random binary complementary masks of 64×64 

pixels. 

An example of such a double-mask measurement can be seen in Figure S6B. It is possible to 

approach the data reconstruction in several ways compared to the standard multi-snapshot CASSI, owing 

to the mask's complementarity. We denote the standard multi-snapshot approach as Double, which means 

that the two detector images are optimized during the datacube retrieval in parallel. The standard single-

snapshot CASSI is represented in this chapter as Single. Nevertheless, in our complementary measurements, 

we can subtract the upper and the lower image, which would correspond to a measurement with a mask 
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composed of ±1s – we indicate it as Diff. It is worth noting that CS algorithms work better for {+1,-1} 

matrices than for {+1,0} matrices because of their compressed sensing performance [52].  

However, by using only this differential image, we would lose the information about the magnitude 

– this occurs when one subtracts two similar datasets, which are shifted with respect to each other. 

Therefore, a better way to process the data is to calculate not only with the difference between the snapshots 

but also with their sum – the Diffsum approach. It is a combination of the differential character of the random 

mask while it preserves the information about the image intensity scaling. The matrix notations overview of 

detector images �̅� for all the approaches is in Table S1. 

Table S1: Different approaches to data processing. �̅� denotes detector image. 𝐴 and 𝐵 are upper and lower FO images, 
respectively. 

Data processing approach  Matrix notation  

Single  �̅� = [𝐴]  
Double  �̅� = [𝐴; 𝐵] 
Diff  �̅� = [𝐴 − 𝐵]  
Diffsum  �̅� = [𝐴 − 𝐵; 𝐴 + 𝐵]  

 

The final detector image 𝐷 fed to the reconstruction algorithm is 𝐷 = [�̅� 𝑍𝑂̅̅ ̅̅ ], where 𝑍𝑂̅̅ ̅̅  is a sum 

of upper and lower ZO images.  

6.2 The effect of data processing approaches 

Here, we will demonstrate the difference between the data processing approaches on two scenes – an 

opaque cross and a stained glass foil illuminated by a spectrally broad light. More examples can be found in 

Ref. [53]. Figure S7 shows selected slices of the reconstructed datacube for different data processing 

approaches. As can be seen, all approaches are able to reconstruct spatial information well since we employ 

the ZO image in all the cases. Nevertheless, the approaches differ mainly in the reconstructed spectrum of 

the light. The Single, Diff, and Double approaches face a problem with spectrum reconstruction below 500 

Figure S6 (A) Example of a complex scene with many different spectral features. The 
red square marks the imaged area. The red circles are used for spectra comparison. (B) 
The scene from (A) detected by our CASSI system. Note that the same color bar applies 
to Figure S7 and Figure S8. Addapted from [53] 
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nm, where the intensity should be zero due to the use of the yellow cut-off filter. In terms of the 

reconstructed spectrum, we can safely say that Diffsum is the best approach.  

To show the ability of the system to retrieve more complex scenes, we performed measurements of 

a stained glass foil (see the scene in Figure S6). It is worth noting that the good spatial information obtained 

is mainly thanks to the extension of CASSI by the ZO image, which was described in the previous chapter. 

Nevertheless, we can see the improvement as we extend into the double mask approaches, which exhibit 

much better homogeneity compared to the Single approach. See the selected enlarged slices in Figure S8 for 

comparison. It shows that Diffsum exhibit more uniformity as opposed to Single. 

In Figure S9 are depicted the measured and reconstructed spectra of three points of the stained 

glass foil scene. The colors of the curves correspond to the colors of the selected points in the scene. The 

Figure S8 Reconstructed spectrally integrated image and individual spectral slices of an 
stained glass foil with broadband light by using four processing approaches (see Table 
S1). Two spectral slices of Single and Diffsum were enlarged for comparison. Extracted 
from [53] 

Figure S9 Measured spectra at the points marked in Figure S6A (on the left). 
Reconstructed spectra at the same points for four different reconstruction approaches (on 
the right). 

Figure S7 Reconstructed spectrally integrated image, individual spectral slices, and a 
spectrum of an opaque cross illuminated with broadband light by using four processing 
approaches (see Table S1). Adapted  from [53] 
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results indicate that, although obtaining a good spatial resolution was possible, the scene is too complex to 

reconstruct spectra reliably. It is worth noting that the spectra were not adjusted for the spectral efficiency 

of the system. Nevertheless, the closest similarity was achieved using Diffsum. 

6.3 Conclusion of Chapter 6 

We showed that by a simple modification of the optical setup, we were able to improve the compression 

ratio in CASSI systems 2-fold and as much as 2.7-fold using also the ZO image compared to the standard 

CASSI. Simultaneously, the modification retained the CASSI’s main advantage – a single snapshot.  

We demonstrated the improvement in the reconstruction quality on a broad spectral range of 500-

900 nm. Utilizing the Double approach, which is equivalent to multi-snapshot CASSI, it reached an increase 

of ~1.0 dB in PSNR. We also quantified the superiority of complementary masks over noncomplementary 

ones. With the use of the ZO image, we were able to make the initial estimate of the datacube very similar 

to the measured scene, which, on average, decreased the total number of reconstruction iterations needed. 

 Moreover, we proposed a new approach to data processing which we denoted as Diffsum or 

differential CASSI (D-CASSI) since it utilizes a matrix of {+1,-1} as a random mask. This was possible 

thanks to the mask's complementarity. PSNR, in this case, soared ~1.9 dB compared to Single.  

We backed our measurement of real scenes with rigorous simulations, which enabled us to quantify 

the results. It also allowed us to control the reconstruction parameters better, explore the possibility of using 

different reconstruction algorithms, compare our proposed approach to standard CASSI covering the whole 

double projection area, and investigate utilizing random masks of higher dimensions.  
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7 Evaluation of the CASSI extensions in the IR region 

The ultimate goal of the thesis was to evaluate the effectiveness of the CASSI extensions made within this 

work for hyperspectral imaging in the IR spectral region. Therefore, we created a set of artificial scenes and 

detector images as it would be produced by an IR CASSI system. As opposed to the visible spectral region, 

it is also necessary to consider the radiation of a black body, which could be calculated by Planck's law – see 

Chapter 1.1.1 in the thesis. Compared to Chapter 4, here we implemented both extensions of CASSI, which 

shift the abilities of the method to a different level. 

The random mask dimensions in our optical setup were constrained by the aberrations present in 

our system, as it was designed mainly on off-the-shelf optics due to the vision of building an analogous 

setup in the IR. However, the results for higher resolution masks in Ref. [53] showed that using a 256×256 

px random mask would lead to better CASSI performance. Therefore, we exploited this knowledge and 

used it in the following simulations. There is also a practical rule mentioned in Ref. [54], which says that for 

exact recovery, it is necessary to have about four incoherent samples per unknown nonzero term. I.e., the 

number of samples is equal to 4 times the sparsity level. It also underlines the idea behind using a higher-

resolution mask. 

This chapter describes data preparation, reconstruction and scene parameters testing, the noise and 

spectral dimension size effect, and various approaches to improve hyperspectral data reconstruction (e.g., 

promoting sparse solutions via multiple regularization weights). Finally, results combining spectrally-focused 

reconstruction with a zeroth-order image are shown. 

7.1 Reconstruction and scene parameters testing 

First, a set of different parameters were tested on a datacube 256×256×50 with distinct properties to identify 

the major parameters to tune during the optimization of datacube retrieval. The tested parameters and scene 

properties included: 

 Noise in the detected image with a different amount of SNR in dB (23.5, 34.8, 44.8, and without 

noise) 

 The concentration of the chemical agent (isopropanol of 1000 ppm-m or 3333 ppm-m) 

 Transforming the spectral slices with various wavelet transforms (Haar and Symlet 8) 

 Option to use DCT (discrete cosine transform) of the datacube in the spectral dimension 

 Different values of regularization parameter 𝑡𝑎𝑢 (put stress on the sparsity).  

The reconstructions that showed the best PSNR results for noisy data were achieved using Symlet 

8 wavelets together with DCT in spectral dimension. The results of noisier data were more prominent to be 

𝑡𝑎𝑢 dependent. The maximal difference of PSNR between the best results achieved using different 𝑡𝑎𝑢 was 

1.9 dB. The most significant reconstruction quality change was observed between SNR 23.5 dB and 34.8 

dB. Hence, the next logical step was to create data with finer SNR division around those values.  
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7.2 Combining spectrally- and spatially-oriented reconstructions 

After many trials of improving and enhancing reconstruction quality mentioned in the chapters above, we 

ended up with two sets of datacube reconstruction parameters – one with a focus on good spatial 

information (indicated as SETspatial) and the other one with a focus on yielding correct spectra (indicated as 

SETspectral). Below we present results for three scenes denoted as Scene A – Figure S10A, Scene B – Figure 

S10B, and Scene C – Figure S10C [55, 56]. The properties of the data in this chapter were set as follows: 

datacube 256×256×50 px, the concentration of isopropanol in the scene 1000 ppm-m, noise at the detector 

SNR = 29.8 dB. 

One of the important points in evaluating the simulations was the assessment of spectral quality. 

We found out that the overall SAM score (see Chapter 1.5 in the thesis) does not necessarily reflect the 

fidelity of the reconstructed spectra of the chemical. Hence, we also considered the mean SAM score only 

from the area where the chemical is present – we denote it SAMchem. This metric reflects much more 

faithfully the quality of the retrieved spectral features in the IR region. 

This discrepancy can be seen in Table 5 in the thesis, providing the results of Scene A 

reconstructions. The reconstruction RecAspatial was performed using SETspatial, while RecAspectral was 

reconstructed using SETspectral. RecAspatial achieved a better SAM score than RecAspectral, but at the same time, 

SAMchem is much worse.  

The main distinction between the two abovementioned sets of parameters is the use of DCT in the 

spectral dimension. This way, DCT highly promotes correct spatial information but corrupts the spectra. 

The evaluation metrics of these reconstructions are in Table 5 in the thesis, denoted as RecAspatial and 

RecAspectral, respectively. It can be seen that RecAspatial is superior in terms of spatial correctness (higher 

PSNR and SSIM), but the spectra in points P3-P5 are absolutely missing spectral features of the spilled 

chemical (higher spectral error SAMchem). In contrast, for RecAspectral, we obtain more reliable spectra, but 

the reconstructed images resemble seeing the scene with severe myopia (see Figure 30 in the thesis). 

From this point of view, it is not possible to obtain accurate spatial and spectral information at the 

same time. Nevertheless, considering that our primary goal is to localize and identify a chemical compound 

in a scene, we should prioritize the faithful spectra. Here comes into play, once again, the invaluable feature 

Figure S10 Original scenes used for testing in Chapter 7 denoted as (A) Scene A, (B) Scene B, and (C) Scene C. 
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of our system that arises from the combination of CASSI extensions described in Chapters 5 and 6 in the 

thesis – i.e., acquiring a zeroth-order image of a scene. 

We know that the ZO image has correct spatial information as it is an integral combination of all 

encoded slices of the measured datacube. Hence, by scaling each spectrum according to the corresponding 

pixel intensity in the ZO, we preserve the spectra while achieving great spatial resolution. It can be written 

as:  

 DC(𝑖, j, λ) = 𝐷𝐶𝑁𝑜𝑟𝑚(𝑖, 𝑗, 𝜆) . 𝑍𝑂(𝑖, 𝑗) Equation S1 

where 𝐷𝐶𝑁𝑜𝑟𝑚(𝑖, 𝑗, 𝜆) is the reconstructed datacube normalized on its mean value, 𝑍𝑂(𝑖, 𝑗) is the zeroth-

order image, and DC(𝑖, j, λ) is the resulting datacube. 

Performing SETspectral reconstruction and then applying Equation S1 to the reconstructed datacube, 

we obtain results in Figure S11, which clearly outperform the reconstructions RecAspatial and RecAspectral – 

see RecAcomb for comparison in Table 5 in the thesis. In Figure S11, there are selected reconstructed spectral 

slices (panel A), an integrated image of all the reconstructed slices (panel B), and spectra from nine selected 

points P1-P9 of the scene (panel C). The location of the points can be seen in panel B. The same applies to 

Figure S12 and Figure S13. 

Figure S11 The best achievable results for Scene A using a combination of SETspectral 
and post-reconstruction utilization of zeroth-order image according to Equation S1. The 
reconstruction is denoted as RecAcomb. (A) Selected reconstructed slices. (B) Integrated 
reconstructed slices. (C) Original (blue) and reconstructed (red) spectra from the points 
marked in B. 
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Table S2:  The best achievable results for a combination of SETspectral and post-reconstruction utilization of ZO image according 
to Equation S1 for Scene A-C 

 PSNR SSIM SAM SAMchem 

RecAcomb 34.63 0.90 1.35 2.24 

RecBcomb 34.41 0.90 1.41 2.22 

RecCcomb 32.56 0.85 1.56 2.28 

In order to evaluate how the reconstruction quality would change in dependence on different 

conditions, we tested the reconstruction parameters on different scenes – see Figure S12, Table S2 for 

results of a scene with a more complicated area of chemical absorption (Scene B, Figure S10B), and Figure 

S13, Table S2 for results of a scene with a more complicated area of chemical absorption and more complex 

spatial features (Scene C, Figure S10C). 

Points with higher intensity in the original scene lead to worse quality of reconstructed spectra in 

these points – see points P7 and P8 compared to points P1 and P2 in Figure S11, Figure S12, and Figure 

S13. The fine details in the reconstructed slices deteriorated, which is caused mainly due to the noise.  

Figure S12 The best achievable results for scene B using a combination of SETspectral 
and post-reconstruction utilization of zeroth-order image according to Equation S1. The 
reconstruction is denoted as RecBcomb. (A) Selected reconstructed slices. (B) Integrated 
reconstructed slices. (C) Original (blue) and reconstructed (red) spectra from the points 
marked in B. 
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Nevertheless, the degree of retrieved details is more than satisfactory in terms of imaging a scene 

and locating a chemical substance. Joint reconstructions yielded the same SSIM as reconstructions using 

SETspatial, as well as the same SAM and SAMchem scores as SETspectral. PSNR slightly decreased for Scene A 

and improved for Scene B and Scene C. 

7.3 Robustness against noise for the combined retrieval 

A good indication of the performance of the system would be to assess the highest amount of noise at 

which it can still achieve reliable reconstruction. For this purpose, reconstructions of data with varying noise 

were performed. The regularization parameter 𝑡𝑎𝑢 was set to 0.1 as it consistently provided the best results 

for all the scenes. Moreover, in a real scenario, tuning this parameter without prior knowledge of the scene 

would not be possible. The results are summarized in Table S3. 

Table S3 Results for Scene C achieved by using a combination of SETspectral and post-reconstruction utilization of ZO image 

according to Equation S1 with fixed regularization parameter 𝑡𝑎𝑢  for different amounts of noise 

SNR (dB) PSNR (dB) SSIM SAM (°) SAMchem (°) 

34.8 32.65 0.87 1.44 2.26 

29.8 32.34 0.86 1.55 2.33 

25 30.89 0.79 1.95 2.58 

20 28.23 0.67 2.69 3.34 

18 26.30 0.57 3.36 3.82 

15 23.38 0.43 4.45 5.23 

Figure S13 The best achievable results for scene C using a combination of SETspectral 
and post-reconstruction utilization of zeroth-order image according to Equation S1. The 
reconstruction is denoted as RecCcomb. (A) Selected reconstructed slices. (B) Integrated 
reconstructed slices. (C) Original (blue) and reconstructed (red) spectra from the points 
marked in B. 
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Figure S14 shows that the dependency of reconstruction quality on noise is not linear for both 

PSNR and SAMchem. From this point of view, an inflection point from which the quality deteriorates rather 

quickly is near 25 dB of SNR. Hence, the reconstructed data with the noise of 25 dB and 20 dB are presented 

in Figure S15A and Figure S15B, respectively. These values translate to 6.4% and 11.3%, respectively. It is 

still possible to distinguish the spatial information in Figure S15B, even though it is visibly noisier. However, 

evaluating the spectral information would be a problem as the spectra are severely disrupted. SAM and 

SAMchem, in this case, surged from 1.95 and 2.58 to 2.69 and 3.34, which is approximately 38% and 30% 

increase, respectively. We can draw a conclusion that in order to obtain a reliable reconstruction, the 

maximal SNR in the detected image needs to reach 25 dB. 

 

Figure S15 Results for Scene C achieved by using a combination of SETspectral and post-
reconstruction utilization of ZO image according to Equation S1 with fixed 

regularization parameter 𝑡𝑎𝑢 for noise of (A) 25 dB and (B) 20 dB. 

Figure S14 Dependency between SNR of the data and reconstructed (A) 
PSNR and (B) SAMchem. Plotted data from Table S3, fitted by spline. 
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8 Conclusions 

Throughout this thesis, we have seen how the compressed sensing (CS) technique CASSI relying on a single 

snapshot, is a unique aspirant in the field of hyperspectral imaging (HSI). It has enormous potential for 

obtaining chemical information remotely. Yet, the method possesses a lot of room for improvement. There 

are two main reasons for this. First, it dismantles the primary disadvantages of HSI, which are halting more 

widespread use of HS cameras – these are cost and complexity. As was shown in this thesis, CASSI can be 

constructed as a relatively simple optical setup. Second, CASSI allows capturing HS information at a rate 

not comparable to any other mean. The increasing research interest in snapshot HSI in recent years is a hint 

at the potential of these devices, but because of manufacturing limitations, it has not seen wider adoption 

in commercial use. One exception is the professional astronomical community, which highly benefits from 

the vast light throughput of a telescope when conducting HSI [57]. 

The main contribution of this work is that it determined the limiting factors of CASSI – namely, 

very high compression of the measured data, which is even more pronounced for datacubes with many 

spectral slices. We proposed and realized extensions needed to overcome the obstacles and then provided 

a conceptual study of CASSI operating in the LWIR spectral region, which can perform detection and 

localization of a chemical substance in noisy conditions. 

We developed a differential CASSI (D-CASSI) using two complementary binary random masks and, 

thus, two imaging paths to multiply the measured information and consequently lift the limits of the 

compression. On top of that, this system combines a diffraction grating and a prism as a dispersive element 

allowing for concentric mounting. It is designed so that it can capture both the first- and zeroth-order 

diffraction of the grating on the same detector. Utilizing the zeroth order improves the spatial quality of the 

reconstructed data dramatically. It is worth noting that thanks to masks’ complementarity, we were able to 

develop a completely new approach to data processing and reconstruction, which utilizes a random mask 

consisting of {-1,+1} pixels. The synergy of the CASSI extensions brought into existence gives rise to post-

reconstruction processing that has a huge positive impact on reconstruction fidelity. 

It can be concluded that the modified CASSI system makes it, indeed, possible to perform HSI on 

a broad spectral range in the IR spectral region in order to localize a chemical substance if the resulting SNR 

on the detector is at least 25 dB. Note that the made CASSI extensions retained the simplicity of the optical 

system and the main advantage of CASSI, which is a single-snapshot operation regime. 



 

23 
 

Comment on the papers 

The publications listed below are a part of this thesis. They constitute a substantial portion of Chapters 4-6 

and contain information about the experimental design of the presented optical system, altogether with 

additional results. An interested reader is referred to the following pages, where they are enclosed.  

I. HLUBUČEK, J., ŽÍDEK, K.: Evaluation of using coded aperture imaging in the mid- 
and far-infrared region. In: 5th International Workshop on Compressed Sensing applied to Radar, 
Multimodal Sensing, and Imaging (CoSeRa), Eurasip, 2018. 19. 

II. HLUBUČEK, J., et al. Improving Compression Ratio in CASSI. In: Computational Optical 
Sensing and Imaging. Optical Society of America, 2021. CTh2F.3.  

III. HLUBUČEK, J., et al. Enhancement of CASSI by a zero-order image employing a single 

detector. Applied Optics. 2021, 60(5), 1463-1469.  

IV. HLUBUČEK, J., et al. Differential coded aperture single-snapshot spectral imaging. Optics 

Letters. 2022, 47(9), 2342-2345. 

The work in Chapter 7 is yet to be published.  
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