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Anotace  

Zobrazování doby života fluorescence (FLIM) patří mezi hojně rozšířené přístupy pro analýzu materiálů v 

široké škále výzkumných témat. Je však vždy nutné zvolit vhodnou principiální metodu pro měření 

dynamiky fotoluminiscence (PL) vzhledem k měřenému vzorku.  

V rámci  dizertační práce je představen návrh nové robustní metody, kde není nutná předběžná 

znalost PL dynamiky vzorku. Princip využívá náhodně modulovaný excitační signál, což umožňuje měřit 

dohasínání na širokém rozsahu frekvencí v rámci jedné datové sady. To zaručuje přesnou rekonstrukci 

multi-exponenciální křivky dohasínání PL. Metoda získala název RATS z anglického „Random temporal 

signals“. Pro účely FLIM lze metodu RATS přenést do 2D snímání například pomocí konfigurace jedno-

pixelové kamery (SPC). Zde jsou prezentovány dvě  optické uspořádání metody RATS využívající SPC. 

První z nich využívá dvou difusorů (dvakrát rozptýlené světlo), které jednak zajistí náhodnost časového 

signálu, ale i náhodné prostorové osvětlení měřeného vzorku -- stěžejní pro rekonstrukci SPC scény. Druhé 

optické uspořádání je implementace metody RATS do SPC mikroskopu, kde je prostorová náhodnost 

zajištěna digitálně ovládaným mikro-zrcátkovým čipem (DMD) a časová náhodnost je zajištěn náhodně 

digitálně modulovaným laserem.   

Kromě toho práce představuje dva rekonstrukční přístupy FLIM spektrogramu. První z nich se blíží 

standardním přístupům rekonstrukce spektrogramu FLIM v SPC. Proto sdílí podobné vlastnosti, jako je 

počet nutných rekonstrukcí vedoucí k dlouhé době výpočetního zpracování výsledků. Druhý z 

navrhovaných rekonstrukčních přístupů však potřebuje pouze tolik rekonstrukcí, kolik je dílčích životů 

dohasínání obsaženo v multi-exponenciální křivce PL dohasínání (obvykle bi-, tri-). To výrazně šetří čas 

následného zpracování. Navíc umožňuje zobrazení amplitudových map jednotlivých životů PL, což může 

být přínosné pro výzkum materiálového inženýrství. Oba přístupy jsou analyzovány pomocí simulací z 

hlediska šumových charakteristik a jsou vzájemně porovnávány. 

Nakonec jsou uvedeny myšlenky přímé rekonstrukce parametrů multi-exponenciálních křivek do-

hasínání v případech se šumem. První návrh, založený na řešení nedourčeného systému, očekává řídké ře-

šení. Poskytuje přesné výsledky, ale není vhodný pro systém se šumem. Druhý návrh, využívá hlubokého 

učení a ukazuje na možnost získat hledané parametry dohasínání i v systému se šumem. Hladina šumu (0-

1%) navíc neovlivňuje přesnost zjištěných parametrů. Tyto přístupy by nahradily regresní zpracování a dále 

zjednodušily metodu. 

 

Klíčová slova: spektrometrie FLIM, metoda RATS, komprimované snímání, jedno-pixelová kamera 

 



 

 

Annotation 

Fluorescence lifetime imaging (FLIM) is one of the most widespread approaches to materials analysis in a 

broad range of scientific fields. However, it is always necessary to choose a principal method for measuring 

the dynamics of photoluminescence (PL) concerning the measured sample.  

As a part of the dissertation thesis, a new robust and straightforward method for PL dynamics 

measurement is presented, eliminating the need for prior knowledge about the PL dynamics of the sample. 

The method is based on a randomly modulated excitation signal, which makes it possible to measure PL 

decay at a wide range of frequencies within a single dataset. This guarantees an accurate reconstruction of 

the multi-exponential PL decay curve. The method was named RATS according to the "Random temporal 

signals". The RATS method can be transferred to 2D imaging by using a single-pixel camera (SPC) 

configuration. Here are presented two optical arrangements of the RATS method in SPC. The first of them 

is based on two diffusers (double-diffused light), which both ensure the randomness of the temporal signal 

and the random spatial illumination of the measured sample -- crucial for the SPC scene reconstruction. 

The second optical arrangement is an implementation of the RATS method into the SPC microscope setup, 

where spatial randomness is ensured by a digital micro-mirror device (DMD) and temporal randomness is 

ensured by a randomly digitally modulated laser. 

Moreover, two reconstruction approaches for the FLIM spectrogram are introduced. The first of 

them is close to the standard approaches to FLIM spectrogram reconstruction in SPC and therefore shares 

similar properties, such as the number of necessary reconstructions leading to the long post-processing time. 

However, the second of the proposed reconstruction approaches only needs as many reconstructions as the 

number of partial lifetimes of multi-exponential PL decay (usually bi-, tri-). This significantly saves post-

processing time. In addition, it allows displaying the amplitude maps of individual lifetimes, which can be 

beneficial for material engineering research. Both of them are analyzed via simulations in terms of noise 

characteristics and are compared.  

The thesis is concluded by ideas of precise and direct reconstruction of multi-exponential decay 

parameters in a noisy system. The first proposed solution, based on an undetermined system, expects a 

sparse solution. It gives precise results but is not suitable for noisy systems. However, using the second 

proposal, based on deep learning, it is possible to get precise decay parameters even in noisy systems. 

Moreover, the noise level (0-1%) does not seriously affect the precision of the found parameters. The 

algorithms would replace the regression processing and would further simplify the method. 

 

Keywords:  FLIM spectrometry, RATS method, compressed sensing, single-pixel camera 
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1 Introduction 

Due to the ever-evolving research of new materials, optical spectrometry is an essential analytical method, 

especially because it is a non-destructive and contactless method. One area of spectrometry is focused on 

photoluminescence (PL) properties. The PL occurs when charged carriers in a material are excited to a 

higher energy state by a suitable wavelength of photon radiation [1]. The excited carriers spontaneously 

return to their stable electronic state, partly by generating the above-mentioned PL. The material itself can 

then be evaluated in terms of the PL wavelength spectrum or studied from the point of view of the PL 

lifetime, generally referred to as the study of PL dynamics. 

The study of PL dynamics thus makes it possible to reveal the lifetimes of PL decay [2] but also 

deals with the energy levels of charge carriers [3,4] or examines the mechanisms of relaxation and the 

transfer of excited energy [5,6]. All this information can be obtained for both transparent and non-transpar-

ent samples. Therefore, the measurement of PL dynamics is one of the most used characterization methods 

in the field of chemical physics [7,8], biochemistry [9] but also material sciences in general [10,11]. 

While the measurement of the time-integrated PL spectrum could be performed using a conven-

tional spectrometer, time-resolved measurement needs advanced optical experimental arrangements,  espe-

cially for rapid PL decays (nanosecond or sub-nanosecond timescales). Nowadays, there exist several 

approaches to measuring PL dynamics. Nevertheless, all standard approaches are often based on a pulsed 

laser, which makes the method expensive. Moreover, we frequently need to have a prior assumption of a 

measured lifetime. Besides, each method performs best in a limited range of lifetimes [1,12]. Therefore, it 

is still of great importance to deal with the development of new methods and approaches to measuring PL 

dynamics. 

All these methods can be converted to 2D imaging of PL lifetimes, which is called "Fluorescence 

Lifetime Imaging" (FLIM) [13]. This approach is used mainly for biological samples (tracing using PL 

markers), where it is necessary to monitor ongoing processes [14,15]. Therefore, the main development 

direction is focused on fast data acquisition in terms of the photodegradation of biological samples and PL 

markers [16,17]. This is aided by a number of approaches, such as avalanche field sensing (SPAD) [18] or 

the concept of compressed sensing [19]. Besides, an important direction in the field of instrumentation is 

to create FLIM setups, which are versatile, low-cost and robust with respect to various experimental factors. 

This thesis is devoted to the development and optimization of an entirely new approach to the meas-

urement of PL dynamics and FLIM. The novel method - RATS - is proposed as the central part of this 

work. The method uses a randomly modulated excitation signal for sample excitation, which makes it pos-

sible to reconstruct any multi-exponential decay from a single acquired dataset. The method is robust and 

does not require any signal-timing. For FLIM measurements, the method was implemented in an optical 
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setup of a single-pixel camera configuration. The thesis comprises all steps, ranging from proof-of-principle 

experiments, noise analysis, optimization of the method performance with respect to the temporal and spa-

tial resolution, and a novel approach to the analysis of the PL decays in FLIM. 

 

2 Goals definition based on the analysis of the current state-

of-the-art 

 

1. Design a robust approach to measuring PL dynamics that eliminates the need for prior 

knowledge of the PL sample. 

 

Considering the conclusions of Section 2.1 of the original thesis, it is most often necessary to 

consider the appropriateness of the given time-resolved method before the actual measurement 

of the given sample. We also often need to have some prior knowledge about the PL of the 

sample and set the parameters of the measurement method accordingly. Therefore, finding an 

approach that eliminates these assumptions would mean a significant simplification of the field.    

 

2. Apply the novel approach to 2D PL lifetime imaging (FLIM) using compressed sensing 

techniques and define a reconstruction algorithm of the FLIM spectrogram with low post-

processing time. 

 

As stated in the conclusions of Section 2.3 of the original thesis, it is beneficial to substitute a 

raster mode with an SPC configuration because of shortened measuring time (depending on the 

compression ratio). However, such an approach suffers from the time cost of post-processing 

(FLIM spectrogram reconstruction). Therefore, it is advisable to come up with a new solution 

in the form of an algorithm, where it will not be necessary to reconstruct the entire 3D datacube 

(x,y,t).  

  

3. Analyze the method in terms of noise dependence and compare the stated reconstruction 

algorithms of the FLIM spectrogram. 

 

Noise dependency analysis is a crucial parameter of each method, giving an overview of its 

utilization. Describe possible ways to suppress noise effect to results and compare stated algo-

rithms of FLIM reconstruction.  

 

4. Analyze the possibility of using the compressed sensing technique to directly determine multi-

exponential decay parameters (amplitudes, lifetimes). 

 

Direct determination of decay parameters would avoid fitting and refine FLIM spectrogram 

reconstruction. In accordance with the conclusion of Section 2.3 of the original thesis, 

investigate direct parameters determination using an undetermined system and NN.  
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3 RATS method 

The core of the thesis lies in developing a novel RATS method, which can bypass requirements for 

advanced optical or electronic setups and represents a robust and low-cost solution. 

3.1 Principle of the RATS method 

The principle of the RATS method consists of the excitation of the measured sample with a random 

excitation signal IEXC, which generates a PL signal on the sample, which we designate as IPL. The IPL signal 

also has a random character because it is given by the convolution of IEXC and ID according to Eq.(1), where 

ID represents the PL decay curve. It is necessary to mention that Eq.(1) is valid only for the PL intensity, 

which is linearly proportional to the excitation intensity.  

   .PL EXC DI I I   (1) 

Because of using a signal with a random character, we get a wide range of frequencies in Fourier 

space. Therefore, any multi-exponential ID can be calculated from a single measured dataset. Eq.(2) shows 

the deconvolution used with the so-called Tikhonov regularization [44]. The parameter ε controls the ill-

conditioned cases where the denominator would approach zero. 
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The RATS concept can be illustrated by the simulated data shown in Fig. 1. The excitation signal, 

plotted in blue in Fig. 1(A), was obtained by simulating speckle patterns considering a rotating diffuser 

using Fraunhofer diffraction [45]. 

 

Figure 1: Sequence showing the principle of ID evaluation by the RATS method. A) Simulated time-

modulated IEXC signal (marked in blue) and detected PL signal IPL (marked in red) resulting from mono-

exponential decay (τ = 50 µs). B) Fourier transform amplitudes of IEXC (marked in blue) and IPL (marked 

in red). C) Reconstructed ID using Eq.(2). Adapted from Junek et al. [47], Fig. 1. 
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3.2 Random signal generation 

3.2.1 Diffuser-based signal generator 

One way to generate a random signal is to transmit a coherent beam of light through a rapidly changing 

scattering element (rotary diffuser).  

 

Figure 2: The principle of random signal generation. Left part: An interference speckle pattern formation 

behind the optical diffusor. Middle part: An example of a speckle pattern with an aperture indicated. 

Right part: An example of a randomly modulated signal generated by the generator described above. 

This approach creates randomly changing interference patterns (see Fig. 2), which we refer to as 

laser temporal speckles. The field of temporal speckles is cropped by the iris aperture, which gives a random 

intensity fluctuation in time, which can be used to excite the sample. In the diffuser-based RATS 

experimental setup, any coherent light source can be used to excite the PL.  

3.2.2 Laser modulation-based signal generator 

The second way to generate a rapid random signal is using a digital random laser modulation, where a 

rectangular signal with a random duty cycle is generated. The modulation signal is produced by the 

development kit Digilent Cmod A7 and was generated in the FPGA Xilinx Artix-7 (VIVADO software 

package). The bitstream is generated via Linear Feedback Shift Register (LFSR) from flip-flops and XNOR 

gate feedback, configured in FPGA. The output of the LFSR meets many randomness tests [48].  

3.3 Optical setup (0D-RATS) 

The RATS method does not require any significantly expensive elements, and due to its simplicity, there is 

no need for complicated adjustment or calibration of the optical arrangement. 

3.3.1 Diffuser signal generator-based optical setup 

In general, any coherent light source suitable for sample excitation can be used as the excitation source. An 

essential part of the optical arrangement is the random signal generator, which consists of three components 

– a focusing lens, a rotating diffuser, and an aperture.  
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Figure 3: Schematic of the used optical arrangement for single-point 0D-RATS measurement. Adapted 

from Junek et al. [46], Fig. 2. 

The output beam from the generator was divided by a beamsplitter into the reference branch, where 

the IEXC was detected via a photodiode and transmitted part. The transmitted beam is directed to the meas-

urement branch. A colour filter was used to block the scattered excitation light not to reach the photomul-

tiplier.  

3.3.2 Digital signal generator-based optical setup 

In the case of using a random digital signal (see Section 3.2.2), the optical setup is significantly simplified, 

as can be seen from Fig. 4. In addition, the optical power efficiency is increased and depends just on the 

properties of a used beamsplitter (BS).  

 

Figure 4: Schematic of 0D-RATS optical setup based on random digital modulation. 

3.4 Properties of the RATS method 

Due to the use of a random signal, the RATS method can be used to retrieve an arbitrary multi-exponential 

ID curve or a non-exponential PL decay. 

Both excitation and PL signals (IEXC and IPL, respectively) have to be detected to carry out the 

reconstruction of PL dynamics. Nevertheless, it is not necessary to attain careful timing of the signals. The 

mutual temporal shift of the so-called "zero time" between the PL and the excitation data will only cause 

the decay of the PL to be multiplied by a constant complex number e-iφ, where the phase φ will be scaled 

according to the corresponding time difference. 



 

9 

 

At the same time, the present offset value in the signals (the shift along the y-axis) is only reflected 

at the zero frequency of the Fourier transform and can be avoided by removing low frequencies from the 

decay reconstruction.  

At the same time, the RATS method – as a method based on the deconvolution of a signal – is 

sensitive to the periodicity of the random excitation signal. From the nature of the deconvolution in Eq.(2), 

it follows that the periodic waveform leads to a periodic ID signal with an amplitude distributed between 

the periodic replica of the PL decay. Therefore, the amplitude of the retrieved PL signal is correspondingly 

reduced, while the noise present in the data remains the same. Therefore, the approach based on a rotary 

diffuser can be problematic. However, the periodicity of the excitation signal can be entirely avoided by 

using a modulated laser (random digital modulation), which can fully replace the analog generator of the 

random excitation signal (see Section 3.2.2). 

3.4.1 Impulse response function 

The decisive parameter of PL dynamics spectroscopy is the temporal resolution of the method. This is 

characterized by the width of the impulse response function (IRF). The IRF in a given optical system can 

be determined by measuring a sample where the PL decays much faster than the expected IRF width -- the 

full width at half maximum (FWHM). 

 IRF of the diffuser-based optical setup  

In the case of the RATS method, the IRF width is mainly affected by the modulation rate of the IEXC signal, 

which is related to the speed of temporal fluctuation of the speckles.  

In the last experimental campaign, significant progress was achieved towards the optimization of 

the IRF. The diameter of the focused beam was reduced to 2.3 µm, the measured diameter of the rotating 

diffuser was 125 mm, the average grain size was around 4 µm and the rotating frequency of the diffuser 

reached 230 Hz. In such an arrangement, an IRF width = 45 ns was obtained. 

 IRF of the laser modulation-based optical setup 

Since the random digital modulation creates a rectangular signal, the signal contains, in addition to the 

carrier frequency, several significantly higher frequencies related to the steepness of the leading and falling 

edges. Therefore, when determining the IRF, the sampling frequency played an important role.  

The sampling frequency was always chosen to fulfil the Shannon-Nyquist theorem for carrying 

frequencies of the fastest bit of the signal.  

In the best case, we were able to reach the IRF width of 6 ns, which is approximately an order of magnitude 

improvement compared to the analog mode of temporal speckles generation. 
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4 2D-RATS 

The RATS approach can also be used for 2D fluorescence lifetime imaging (FLIM) via several possible 

implementations. This thesis was directed towards the single-pixel camera (SPC) configuration, which pro-

vides the advantage of the reduced number of measurements. The SPC data can be processed and evaluated 

via two different approaches, which were introduced in recent manuscripts by Junek et al. [47,49] – see 

Sections 4.1 and 4.2. Both approaches (FLIMB and FLIMA) diverge in the steps following Eq.(4).  

In the SPC implementation of RATS, the sample is illuminated by a set of random excitation 

patterns (masks). The intensity of excitation masks fluctuates globally in time so that all pixels are excited 

with the same temporal waveform IEXC(t). The detected PL intensity corresponds to the sum of PL from all 

illuminated segments in the sample. Therefore, it can be detected by a single-pixel detector. The IPL signal 

is then given as the sum of the sub-signals IPL(i) from individual pixels, and Eq.(1) can then be rewritten 

for the total PL intensity as: 

 
1 1
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     (3) 

The number of excitation masks M is given by the total number of image pixels N and the so-called 

compression ratio k = M/N. Since the masks are not coherent, i.e. they are random to each other, each mask 

illuminates a different combination of sample segments, and therefore, each individual mask leads to a 

specific IPL signal. Following the 0D-RATS retrieval of the PL decay, it is possible to extract the PL decay 

IDA for each mask as:  
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Therefore, we attain M different PL decays IDA, corresponding to M different masks. 

4.1 FLIMB reconstruction approach 

As stated in Section 4, the number of calculated PL decay curves IDA corresponds to the number of used 

masks M. By considering the data from the point of view of mask number, the set of all IDAs provides us 

with the PL intensity fluctuations at any delay after excitation – see Fig. 5(B). By plotting the intensity 

fluctuation only at a single delay, we obtain the ISPC signal, where the number of ISPC values corresponds to 

the number of used masks M (Fig. 5(C)). Using the knowledge of ISPC, the known pattern of the used masks, 

and compressed sensing algorithms, the PL image m(t) corresponding to the given delay after excitation 

can be reconstructed. The reconstruction is done via minimization according to Eq.(5). 
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  2
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The matrix A is created from the vectorized random masks used for the sample excitation. TV stands 

for total variation. 

 By reconstructing the temporal frame (a 2D image) for each time point of the IDA curve, we obtain 

a 3D datacube that contains the PL decay curve for each i-th pixel of the ID(i,t) sample. In each i-th pixel is 

necessary to perform the fitting to determine the lifetime 𝜏. The whole concept is illustrated and summarized 

in Fig. 5. 

 

Figure 5: (A)Scheme of the 2D-RATS approach where the sample is illuminated by a set of random 

patterns (masks) fluctuating in intensity according to IEXC(t). The overall IPL(t) corresponding to the given 

mask is detected by a single-pixel detector. (B)Example of a set of calculated IDAs for the corresponding 

set of masks – see Eq.(8) – and fluctuations ISPC in intensity for each delay after excitation. (C)Knowledge 

of the ISPC signal and the set of used masks will allow determining the PL map m(t) for a given time point t 

of the IDA curve using reconstruction algorithms. (D)An example of a final FLIM spectrogram as a map of 

PL lifetimes. Adapted from Junek et al. [49], Fig. 1.  

4.2 FLIMA reconstruction approach 

This approach is also based on the use of a single-pixel camera configuration. The assumption is made that 

if we illuminate the entire measured area with a homogeneous illumination (fluctuating in time according 
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to IEXC), we can reconstruct the total PL decay curve IDA0 according to Eq.(4). The IDA0 curve contains all 

lifetimes τ present in the measured sample, which can be revealed via fitting (so-called zeroth step). The 

extracted lifetimes then create a cornerstone for the subsequent FLIM data processing. In practice, it is often 

appropriate to consider a bi-exponential curve, at most a tri-exponential one, mainly because of the simi-

larity of individual multi-exponentials and the possibility of a wrong fit [1]. In the following data processing 

steps, we will consider a bi-exponential curve (parameters τ1 and τ2). Subsequently, the scene is illuminated 

by a set of M masks with N pixels -- connected to the compression ratio k = M/N. Decay IDA, corresponding 

to each mask, is determined according to Eq.(4). 

 

Figure 6: (A) Example of fitting IDA curve amplitudes A1 and A2, where the distribution of 𝜏1 and 𝜏2 is 

already known from IDA0 fitting. The amplitude fitting provides vectors A1SPC and A2SPC. (B) 

Reconstructed amplitude map H𝜏1. (C) Reconstructed amplitude map H𝜏2. (D) Calculated FLIM 

spectrogram based on knowledge of H𝜏1 and H𝜏2. Adapted from Junek et al. [49]. Fig. 4. 

Each IDA is then fitted with the fixed parameters τ1 and τ2 -- known from the initial fitting of the 

total PL decay IDA0. Therefore, the only fitting parameters are A1 and A2 (see Eq.(6)). Since the amplitudes 

connected to the PL lifetimes are extracted for each mask, two vectors, A1SPC and A2SPC of size M, are 

obtained. Vectors A1SPC and A2SPC contain information about PL amplitude connected to the PL lifetimes 

τ1 and τ2. 
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From the knowledge of A1SPC and A2SPC and the dataset of random masks B, it is possible to 

calculate the amplitude maps Hτ corresponding to the individual lifetimes τ1 and τ2 according to Eq.(7), 

where TV denotes the total variation. 
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The lifetime maps can be evaluated individually, and an effective PL lifetime (FLIM spectrogram) 

is possible to calculate from them. In this thesis, we calculated the desired FLIM spectrogram by the 

weighted averaging of the present lifetimes. The weights in a given pixel are represented via Hτ maps. In 

the general case of the n-exponential case, we define the FLIM spectrogram τ(x,y) as: 
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The principle of FLIM spectrogram determination using the FLIMA approach is summarized in 

Fig. 6. We would like to outline a significant reduction of post-processing time -- it is necessary to make 

only as many reconstructions as the n-exponential case is expected/found. 

4.3 Optical setup for 2D-RATS measurement 

The optical arrangement of the 2D-RATS depends on the choice of the random signal generator, which was 

presented in Section 3.2. By choosing an analog signal generator based on a rotary diffuser (see Section 

3.2.1), we can expect significant losses in the intensity of the excitation energy compared to a digitally 

random modulated laser (see Section 3.2.2).  

 

Figure 7: Schematic of the optical arrangement for 2D-RATS in a single-pixel camera configuration 

based on two optical diffusers. Adapted from Junek et al. [47], Fig. 4. 
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Another decisive parameter is the approach to random mask generation. The first way is using a 

laterally sliding diffuser, which can generate masks in grayscale resolution based on the speckle pattern. 

The second way is using a digital micro-mirror device (DMD) to generate binary masks with the option of 

choosing a resolution limited by the chip parameters. 

Two optical arrangements based on the 2D-RATS method are presented in the thesis. The first one 

shows the possibility of FLIM measurement using two diffusers (Fig. 7). The second optical setup shows 

the implementation of the RATS principle into microscopy using DMD and a digitally modulated signal 

(Fig. 8). 

 

Figure 8: Schematic of a 2D-RATS optical setup implemented in a microscope setup using DMD 

narrowing and digital time modulation. Adapted from Junek et al. [49], Fig. 7. 

4.4 Reconstruction parameters 

In both reconstruction approaches, FLIMA and FLIMB (see Sections 4.1 and 4.2), we used the TVAL3 

algorithm to calculate the undetermined systems [52,53]. The TVAL3 algorithm uses the total variation 

(TV) of reconstructed images as a regularization parameter. The minimization is governed by Eq.(5) or 

Eq.(7) [54]. The reconstruction parameters were set according to a number of test experiments and simula-

tions. See the original thesis for more details. 

4.5 Proof of principle experiments 

Several proofs of principle experiments of both reconstruction routines FLIMB and FLIMA were performed. 

However, they are not presented here due to the limited scope of the self-report of the thesis. However, the 

results can be found in the original thesis or in Junek et al. [47,49].  
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5 Noise effect analysis 

In order to maintain constant conditions, this analysis was performed using simulations that faithfully cop-

ied real experimental environments. The primary IEXC signal was simulated using temporal speckle patterns 

generation [45], considering the realistic random analog signal generator [46]. The analysis showed that the 

noise added to IPL has a more pronounced effect on reconstructed PL maps than when the noise is added to 

IEXC (see Fig. 10). It is because the noise distorts reconstructed IDAs (see Fig. 9), so it directly affects the 

distortion of ISPC.  

 

Figure 9: (A) ID reconstruction with a noise level of 3% in the IEXC signal, corresponding to an SNR of 

15.2 dB. IPL was considered noiseless. (B) ID reconstruction with a noise of 3% in the IPL, corresponding 

to an SNR of 15.2 dB. IEXC was considered noiseless. Adapted from Junek et al. [50], Fig. 2. 

 

Figure 10: Left part: reconstruction of PL map m(t) at the ID timepoint of maximal intensity (t = 0 µs) in 

the case of noise in IEXC. Right part: reconstruction of the PL map m(t) at the timepoint (t = 0 µs) in the 

case of the noise in the IPL. Rows: signal-to-noise ratios SNR = 15.2, 18.2, 20, 23 dB (rows). Columns: 

compression ratios k = 0.4, 0.6, 0.8. Adapted from Junek et al. [50], Fig. 3. 
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Initially, white noise was added only to the IEXC signal, while the IPL signal remained absolutely 

noiseless and vice versa. The amount of noise added to the system was SNR 23 dB (0.5%), 20 dB (1%), 

18.2 dB (1.5%), 15.2 dB (3%), which corresponds to real experimental conditions. The duration of the 

simulated IEXC signal was 0.1 s with an impulse response function FWHM of 2.07 µs. ID was considered 

with 𝜏 = 20 µs. The IEXC signal was simulated as non-periodic. Unless otherwise stated further, the regular-

ization parameter ε (see Eq.(2) and Eq.(4)) is kept as ε = 0.1. The result also revealed that it is not easily 

possible to compensate for the effect of present noise by increasing the compression ratio. 

5.1 Optimization of noise effect on PL map reconstruction 

It is possible to increase the quality of the acquired ID or IDA by prolonging the acquisition time. The 

approach favours the frequencies representing the real signal in the Fourier spectrum and suppresses the 

artificially added white noise contribution. Since the RATS method is based on signal deconvolution, we 

used a non-periodic signal IEXC (see Section 3.4). The 𝜎 describes the average deviation of reconstructed 

IDREC and prescripted ID in all pixels. 

 

Figure 11: Dependence of the acquisition time on the deviation σEXC – noise considered in IEXC (left part) 

and σPL – noise considered in IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB 

(magenta) for three different compression ratios k = 0.4 (solid line), k = 0.6 ( circle), k = 0.8 (cross). 

Adapted from Junek et al. [50], Fig. 9. 

Another way to eliminate the effect of noise is the choice of the regularization parameter ε in Eq.(2) 

or Eq.(4). The regularization parameter makes it possible to solve ill-conditioned problems where "division 

by zero" could occur, i.e. for frequencies with low amplitudes in the IEXC signal [44]. The regularization 

parameter adds a specific amount of the averaged spectrum power to the denominator (see Eq.(2) and 

Eq.(4)). Thus eliminating the influence of less frequent frequencies in the signal (white noise). As a result, 

the calculated ID or IDA waveform is smoothed. 
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Figure 12: Dependence of ε on deviation σEXC – noise considered in IEXC (left part) and σPL – noise 

considered in IPL (right part). SNR: 15.2 dB (red), 18.2 dB (blue), 20 dB (black), 23 dB (magenta) for 

three different compression ratios k = 0.4 (solid line), k = 0.6 ( circle), k = 0.8 (cross). Adapted from 

Junek et al. [50], Fig. 12. 

Due to the random nature of the signals, no mathematical filtering of the signal was intentionally 

applied, as important frequencies would easily be eliminated. Mathematical signal filtering could certainly 

be optimized for one random pattern of signal, but at the expense of the general applicability of the results. 

Although the analysis above was made for the FLIMB approach, most of the knowledge, especially 

the optimization of the noise effect on the PL decay IDA retrieval for a single random mask IDA, is also freely 

transferable to the alternative FLIMA reconstruction approach. The FLIMA approach is based on the direct 

reconstruction of amplitude maps corresponding to lifetimes τ (see Section 4.2). 

5.2 Noise reconstruction stability of FLIMA and FLIMB approaches 

Now, we focus directly on the effect of noise on FLIM spectrogram quality, i.e. to compare the precision 

of the retrieved PL lifetimes in the spectrogram. By doing this, we can compare both approaches, FLIMA 

and FLIMB, which feature significantly different data processing. 

Based on the results presented in the previous chapters and the results presented by Junek et al. [50], 

we focused only on the compression ratio k = 0.4, and the noise is present only in the measured PL signal 

IPL, while the excitation dataset IEXC was assumed to be noiseless. The noise level was set to values of 0%, 

0.5%, 1%, and 1.5%. The resulting FLIM spectrogram labelled F was evaluated by the percentage deviation 

R compared to the simulated reference U.  
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In view of Fig. 13 and Fig. 14, the FLIMA approach is more stable in terms of noise, while the 

FLIMB approach may experience local errors. Only in the 0% noise case was the FLIMB approach more 
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accurate than FLIMA. That is because the overall FLIMA spectrogram distortion was reflected by a slight 

deviation in the IDA0 fit (so-called zeroth step). 

 

Figure 13: Above the line is the ground truth, which can be compared to the simulated results below the 

line. The FLIMA approach is represented in the third column - supplemented by reconstructions of partial 

amplitude maps H𝜏1 (the first column) and H𝜏2 (the second column). The results of the FLIMB approach 

are presented in the fourth column. Each row corresponds to the chosen noise level in the system (0-

1.5%). Adaptet form Junek et. al [49]. Adapted from Junek et al. [49], Fig. 5. 

 

Figure 14: Evaluation of FLIM spectrogram reconstruction error – see Eq.(14) - via FLIMA (direct PL 

lifetime map) and FLIMB (frame-by-frame PL maps reconstruction) approach for a different amount of 

noise in a system (IPL signal). Adapted from Junek et al. [49], Fig. 6. 
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6 Direct determination of PL decay parameters 

The RATS method can be used to obtain the dynamics of PL decay ID, which typically has an exponential 

character in time (mono-exponential, bi-exponential, tri-exponential, …). However, for the sake of data 

interpretation, the PL lifetime 𝜏 needs to be determined. This can only be done during additional data pro-

cessing, namely by regression of a suitable exponential function. The regression process can be very time-

consuming, especially for a 2D scene. Often, it depends on the experimenter which exponential function 

(mono-, bi-, tri-) is used for regression. Therefore, it is advisable to avoid this step and obtain precise infor-

mation about the lifetime of PL 𝜏 directly from the measured data (random IEXC/IPL signals).  

Moreover, it should be kept in mind that in general multi-exponential cases, the shape of the PL 

decays with two different multi-exponential components can be very similar [58]. Therefore, alternative 

solutions approaches were investigated using the minimization of the undetermined system or using deep 

learning. 

6.1 Direct determination of decay parameters via an undetermined system 

With the assumption of a sparse solution and the vision of the appropriate use of the randomness of the 

excitation signal, an algorithm was compiled based on the minimization of an undetermined system 

(described in detail in the original thesis). The algorithm was successfully verified for systems with SNR > 

78 dB. However, once we simulate more noisy data, the algorithm fails to converge to the correct result. 

The failure of the algorithm with noisy data is apparently caused by the inappropriateness of the 

measuring matrix A, whose randomness is lost due to the character of matrix B. In the ideal case of 

measuring matrix A, a completely different IEXC (different w) for each τ (column of matrix B) should be 

ensured (see the original thesis). However, this is apparently impossible to ensure in realistic 

experimentation conditions. Therefore, we turned to a different approach to retrieve the PL lifetimes. 

 

Figure 15: ID reconstruction consisting of three exponentials with amplitudes - 15, 18, 10 and PL 

lifetimes 𝜏 - 20, 35, 70 μs. Noiseless system. 
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6.2 Direct determination of PL decay parameters using neural network 

The issue of PL lifetime retrieval was also investigated using deep learning and neural networks (NN) as 

an alternative to the previous algorithms. The problem can be defined as a search for the correct lifetimes 

from a list of possible options. Therefore, the so-called "multi-task learning" approach was implemented. 

The multi-task learning is used to recognize multiple objects in the image -- e.g. image analysis used in 

autonomous vehicles [62].  

The training and testing datasets in this subsection are purely synthetic simulated data which relia-

bly copy the real experiment. Data (IPL signals) were generated according to Eq.(1), assuming the same IEXC 

pattern for all simulations. White noise was added just to the IPL so that the noise level corresponded to a 

random 1/SNR value selected from intervals 0-1%. In training and testing datasets, we considered only bi-

exponential decays, i.e. two present lifetimes 𝜏1 and 𝜏2, with a random distribution of amplitudes A1 and A2. 

The training dataset consisted of X = 216 000 simulated traces, where X/6 traces from the data belonged to 

each investigated lifetime. The same amount of data (X/6) also belonged to the IPL with a different lifetime 

(6th neuron). The data in the testing dataset was distributed according to the same logic, where the total 

number of data was Y = 24 000. 

Keras and Tensorflow libraries were used to create the NN model based on 1D convolutional neural 

networks (1D-CNN). For the sake of simplicity and as proof of the principle, the NN was always trained 

for a set of 5 lifetimes 𝜏, chosen from the interval 1-100 μs. The choice of units does not play here an 

important role as it can be arbitrarily set in the simulations. The output of NN was 6 neurons. Neurons 1-5 

represented the investigated lifetimes, and the sixth neuron represented any other lifetime. 

Two cases were explored. In the first case, the training and testing datasets contained closely spaced 

lifetimes from a selected interval (𝜏1 = 20 μs 𝜏2 = 21 μs 𝜏3 = 22 μs 𝜏4 = 23 μs 𝜏5 = 24 μs). After 20 epochs, 

NN predicts the complete PL decay lifetime retrieval with an accuracy of 80.5% for the testing set. 

In the second case, the datasets contained more distinct lifetimes within the interval 1-100 μs, 

namely 𝜏1 = 5 μs 𝜏2 = 23 μs 𝜏3 = 40 μs 𝜏4 = 58 μs 𝜏5 = 75 μs. After 20 epochs, NN predicts the complete PL 

decay lifetime retrieval with an accuracy of 81.9% for the testing set. 

Due to the facts mentioned in the previous sections, determining adjacent lifetimes (the first case) 

is a significantly more difficult task in noisy data, and it is often problematic or impossible to solve using 

commonly used methods [57, 58].  

Nevertheless, the results show that the introduced NN solution can provide us with satisfying re-

sults. Overall, the results in both training cases (the first case expects close and the second remote lifetimes 

in the search spectrum) clearly show that by using NN, the accuracy of determining decay lifetimes does 

not necessarily deteriorate for the noisy cases (tested 0-1%), as it is with standard algorithms. 
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7 Conclusion 

The RATS method was presented as a new method for PL decay measurement, which was fully developed 

during my Ph.D. study. The method can be used in a single-point measurement (0D-RATS) but also in the 

imaging mode (2D-RATS), which finds application in fluorescence lifetime imaging (FLIM). The method 

was successfully verified with the streak camera and TCSPC [46,47]. 

The demonstration experiments of two implementations of the RATS method were presented in this 

thesis. In the first implementation, a random excitation signal was generated using a rotary diffuser, and 

illuminating masks were produced using a laterally moving diffuser (grayscale speckle mask). This 

implementation is straightforward and incomparably low-cost with respect to standard FLIM approaches. 

Nevertheless, it is very ineffective in using the excitation light intensity. The second implementation of 2D-

RATS was a microscopic setup. It used a DMD to generate illuminating masks (binary masks), and the 

excitation signal was based on a randomly modulated diode laser. With this approach, it is possible to 

achieve a temporal resolution in the order of units of a nanosecond and spatial resolution on the micrometer 

scale. 

The thesis also describes two approaches for obtaining a FLIM spectrogram, which we called as 

FLIMA and FLIMB. The FLIMA approach is chronologically younger, and it succeeded in avoiding the need 

for determining the PL decay curve and lifetime (via fitting) in each pixel separately as in FLIMB. Hence, 

the post-processing routine is significantly speeded up. In addition, using FLIMA, it is possible to display 

the amplitude map directly for each partial lifetime, i.e. the distribution of partial lifetimes of multi-

exponential decay within the sample. 

An important step in the optimization of the RATS method was the analysis of the noise effect on 

PL data reconstruction. The analysis revealed a significantly higher sensitivity of the results towards the 

noise corrupting the measured PL signal IPL. In general, the noise level in data turned out to be a key 

parameter of reconstruction quality, which cannot be effectively compensated by simply increasing the 

number of measurements, i.e. by increasing the compression ratio. 

The simulations showed that an efficient way to significantly increase the signal-to-noise ratio is 

either a straightforward prolongation of the acquisition time or the possibility of choosing a suitable 

regularization parameter ε. In the case of prolonging acquisition for one IDA reconstruction, it is necessary 

to consider a significant increase in the total measurement time. The choice of the regularization parameter 

ε is related to the noise level in the system since it smoothes the ID/IDA curve but also causes a slight 

distortion. Therefore, in situations with low noise, it is convenient to keep the regularization parameter at 

values ε = 0.1 or ε = 0.2. In the case of higher noises, it is adequate to choose a significantly higher ε. 

Simulations have shown that with the correct choice of regularization parameter and acquisition time, the 
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RATS method can achieve results that are not distorted and can accurately map a 2D scene even with a 

relatively high noise level (3%). 

The periodicity of the excitation signal IEXC was discussed as part of the noise analysis. The attained 

data showed that periodicity decreases the signal-to-noise ratio. This issue arises due to the application of 

the deconvolution step in the PL decay retrieval. Since the original means of generation of the random 

signal was based on a rotating diffuser, the periodicity effect could play a significant role. Therefore, we 

replaced the original method with a randomly modulated laser with a random seed, which became a cor-

nerstone of the so-called second generation of the 2D-RATS setup. Direct laser modulation turned out to 

be a better solution for the RATS systems. 

Most of the insights gathered through the detailed noise analysis could be applied to both FLIMA 

and FLIMB reconstruction approaches. Although FLIMA and FLIMB are different, it is necessary to recon-

struct the PL decay curve in both cases. The two different approaches to data treatment were compared 

through their FLIM spectrograms for noise levels of 0-1.5%. The FLIMA approach showed more accurate 

results in situations with higher noise levels than 0%. 

Finally, we pursued the idea of creating an algorithm for the direct reconstruction of the PL decay 

parameters with the assumption of an undetermined system. The algorithm searched for a sparse solution 

and worked successfully in noiseless systems. However, in a situation with SNR < 78 dB, the algorithm 

failed to converge to correct results due to the similarity of the different multi-exponential decays.  

Therefore, the possibility of using neural networks (NN) with a multi-task learning approach was 

investigated. The NN model was built on a 1D convolutional neural network (CNN), assuming a limited 

number of searched lifetimes 𝜏, noise presence from 0-1%, and considering only a bi-exponential decay 

system. Considering the difficulty of the issue, NN shows high accuracy in precise determining of PL 

decay curve. In addition, on the tested area of noise (0-1%), the results did not show any significant 

dependence on the accuracy of lifetime determination with respect to arising noise level. These findings 

would be beneficial for a wide range of other disciplines of spectrometry, where the exponential fitting is 

a fundamental part of the analysis, including, for instance, cavity ring-down spectrometry [66,67]. 

Overall, the thesis presents a novel robust time-resolved method RATS for studying PL dynamics. 

The method can be easily implemented into a FLIM measurement based on SPC configuration. In the 

search for a noise-resistant FLIM analysis, we developed two reconstruction strategies, where the direct 

extraction of decay lifetimes shows better noise stability and significantly reduces post-processing time. 

We verified that using trained NN, it is possible to determine the lifetime distribution of the bi-exponential 

system without the result being significantly affected by the amount of present noise (0-1%). 
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