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(martin.plesinger@tul.cz, mata@cs.cas.cz)

Supervisor: Zdeněk Strakoš
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Abstract

The presented thesis focuses on the solution of an orthogonally invariant linear
approximation problem with multiple right-hand sides AX ≈ B through the total
least squares (TLS) concept. With contribution of the early works of Golub and
Reinsch (1970), Golub (1973), and van der Sluis (1975), the TLS theory for a
problem with a single right-hand side was developed by Golub and Van Loan (1980).
Then it was further extended by the so called nongeneric solution approach of Van
Huffel and Vandewalle (1991), and finally revised by the core problem theory of
Paige and Strakoš (2002, 2006). For a problem with multiple right-hand sides, a
generalization of the TLS concept including a nongeneric solution was presented by
Van Huffel and Vandewalle (1991).

Paige and Strakoš proved that for a problem with a single right-hand side, i.e.,
Ax ≈ b, there is a reduction based on the singular value decomposition (SVD) of
A which determines a core problem A11 x1 ≈ b1, with all necessary and sufficient
information for solving the original problem. The core problem always has the
unique TLS solution, and, using the transformation to the original variables, it
gives the solution of the original approximation problem identical to the minimum
2-norm solutions of all TLS formulations given by Van Huffel and Vandewalle.
Moreover, the core problem can be efficiently computed using the (partial) upper
bidiagonalization of the matrix [ b |A ]. Hnětynková, Plešinger and Strakoš (2006,
2007) derived, using the well known properties of Jacobi matrices, the core problem
formulation from the relationship between the Golub-Kahan bidiagonalization and
the Lanczos tridiagonalization.

This thesis extends the classical analysis by Van Huffel and Vandewalle. It starts
with an investigation of the necessary and sufficient conditions for the existence of
the TLS solution. It is shown that the TLS solution is in some cases different
from the output returned by the TLS algorithm by Van Huffel (1988), see also Van
Huffel, Vandewalle (1991). The second goal of the presented thesis is an extension
of the core problem theory concept to problems with multiple right-hand sides.
Here the SVD-based reduction is related to the band generalization of the Golub-
Kahan bidiagonalization algorithm, which was for this purpose for the first time
considered by Björck (2005) and Sima (2006). We prove that the reduction results
in a minimally dimensioned subproblem A11 X1 ≈ B1, containing all necessary and
sufficient information for solving the original problem. Unlike in the single right-
hand side case, the core problem in the multiple right-hand side case may not have
a TLS solution.

Keywords: linear approximation problem, multiple right-hand sides, total least
squares, orthogonal transformation, data reduction, Golub-Kahan bidiagonalization
algorithm, Jacobi matrices, core problem.
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Abstrakt

Předkládaná disertačńı práce se zabývá řešeńım lineárńıch aproximačńıch úloh s v́ı-
cenásobnou pravou stranou AX ≈ B metodou úplných nejmenš́ıch čtverc̊u (TLS
z anglického total least squares). Analýza TLS problému pro úlohu s jednou pravou
stranou byla, v návaznosti na dř́ıvěǰśı práce Goluba a Reinsche (1970), Goluba
(1973) a van der Sluise (1975), publikována v článku Goluba a Van Loana (1980).
Tato analýza byla později rozš́ı̌rena o koncept negenerického řešeńı, který zaváděj́ı
Van Huffel a Vandewalle (1991). Zcela nový vhled do teorie přináš́ı myšlenka core
problému Paige a Strakoše (2002, 2006). Zobecněńım TLS problému na úlohy s v́ıce
pravými stranami, včetně konceptu negenerického řešeńı, se jako prvńı zabývali Van
Huffel a Vandewalle (1991).

Paige a Strakoš dokázali za přirozeného předpokladu ortogonálńı invariance,
tedy nezávislosti řešeńı na volbě souřadného systému, že pro libovolný problém
s jednou pravou stranou Ax ≈ b existuje transformace zkonstruovaná pomoćı sin-
gulárńıho rozkladu matice A, která redukuje p̊uvodńı problém na tak zvaný core
problém A11 x1 ≈ b1, obsahuj́ıćı nutnou a postačuj́ıćı informaci k řešeńı p̊uvodńıho
problému. Dále ukázali, že core problém má vždy nezávisle na p̊uvodńıch datech
řešeńı ve smyslu TLS a toto řešeńı je jednoznačné. Nav́ıc TLS řešeńı core problému
transformované zpět do proměnných p̊uvodńıho problému je identické s př́ıslušným
(klasickým nebo negenerickým) v normě minimálńım řešeńım p̊uvodńıho problému.
Redukce na core problém může být provedena velmi jednoduše transformaćı matice
[ b |A ] na horńı bidiagonálńı tvar. Hnětynková, Plešinger a Strakoš (2006, 2007)
odvodili vlastnosti core problému alternativně pomoćı vlastnost́ı Jakobiho matic a
užit́ım vztahu mezi Golubovou-Kahanovou bidiagonalizaćı a Lanczosovou tridiago-
nalizaćı.

Předkládaná práce rozšǐruje klasické výsledky Van Huffelové a Vandewalleho
pro úlohy s násobnou pravou stranou. Zabývá se analýzou nutných a postačuj́ıćıch
podmı́nek existence TLS řešeńı. Práce ukazuje, že v některých zvláštńıch př́ıpadech
může mı́t TLS problém řešeńı, které je však r̊uzné od výsledku spočteného tak
zvaným TLS algoritmem, viz Van Huffel (1988), př́ıpadně Van Huffel, Vande-
walle (1991). Dále se práce zabývá rozš́ı̌reńım myšlenky core problému na úlohy
s v́ıcenásobnou pravou stranou. Zobecňuje redukci dat založenou na singulárńım
rozkladu a zabývá se jej́ım vztahem k pásovému zobecněńı Golubova-Kahanova
bidiagonalizačńıho algoritmu, které bylo pro tento účel prvně doporučeno Björckem
(2005) a Simou (2006). Ukážeme, že pro libovolné AX ≈ B existuje transformace,
která p̊uvodni problém redukuje na podproblém A11 X1 ≈ B1 minimálńı dimenze,
obsahuj́ıćı nutnou a postačuj́ıćı informaci k řešeńı p̊uvodńıho problému. Ukážeme
však, že na rozd́ıl od úloh s jednou pravou stranou core problém pro úlohy s v́ıce
pravými stranami obecně nemuśı mı́t TLS řešeńı.

Kĺıčová slova: lineárńı aproximačńı problém, v́ıcenásobná pravá strana, úplný
problém nejmenš́ıch čtverc̊u, ortogonálńı transformace, redukce dat, Golubova-
Kahanova bidiagonalizace, Jakobiho matice, core problém.
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Chapter 1

Introduction

We are interested in the linear approximation problem

Ax ≈ b , A ∈ R
m×n , x ∈ R

n , b ∈ R
m , (1.1)

and its more general form

AX ≈ B , A ∈ R
m×n , X ∈ R

n×d , B ∈ R
m×d . (1.2)

Such linear approximation problems arise in a broad class of scientific and tech-
nical areas, for example in medical image deblurring (tomography), bioelectrical
inversion problems, geophysics (seismology, radar or sonar imaging), astronomical
observations. This thesis mainly focuses on the total least squares (TLS) formula-
tion of (1.1), (1.2) that leads to a procedure that has been independently developed
in various literature. It has been known by various names, for example, it is known
as the errors-in-variables modeling in the statistical literature, see [23, 24, 25].

There exist a lot of approaches that are closely related to the TLS concept.
For example, an additional difficulty appears when the system (1.1), (1.2) is ill-
posed, here the matrix A is ill conditioned and typically a small perturbation of
right-hand side causes large changes in the estimated solution. The matrix A is
often numerically rank deficient and it has small singular values, but without a well
defined numerical rank (singular values decay gradually without noticeable gap).
In such cases the least squares (LS), the TLS or similar techniques might give a
solution that is absolutely meaningless, because it is dominated by errors present in
the data and possibly also by computational (rounding) errors. The regularization
techniques must be used in order to obtain a meaningful solution, see for example
[9, 11].

Model reduction represents another important area of applications. Here the
matrix A represents a model and the vector b or columns of the matrix B represent
the observation vectors, e.g. measured data, that naturally contain errors. The idea
is to approximate the high order system (1.1) or (1.2) by a lower order one while
approximating well the behavior of the whole system. Truncation and projection
techniques used to reduce the dimensions of the linear system may also be viewed
as a type of regularization. Such methods are, for example the truncated-least
squares (T-LS) also called the truncated-singular value decomposition (T-SVD),
the truncated-total least squares (T-TLS), see [19], or Krylov subspace methods
and Lanczos-type processes [4]. The system (1.2) can in such applications contain
significantly more observations (columns of B) than is the dimension of range of A,
or the number of columns of A, i.e. d � n; similar situation can occur in various
statistical applications.

1



2 CHAPTER 1. INTRODUCTION

The systems (1.1), (1.2) can be compatible, i.e., b ∈ R (A), R (B) ⊂ R (A),
or incompatible, i.e., b �∈ R (A), R (B) �⊂ R (A). The compatible case is simpler
because it reduces to finding a solution of the system of linear algebraic equations.
Thus here the incompatible case is often considered. Another uninteresting case is
excluded by the assumption AT b �= 0 or AT B �= 0. In this case it is meaningless
to approximate b or columns of B by the columns of A and the systems (1.1), (1.2)
have trivial solutions x = 0 or X = 0, respectively. In particular we assume
a nonzero matrix A and a nonzero right-hand side vector b or matrix B. We
assume for simplicity only the real case, an extension to the complex data being
straightforward.

Since the incompatible problem does not have a solution in the classical meaning,
the solution is obtained by solving a minimization (optimization) problem. It is
senseful to assume orthogonally (unitarily) invariant minimization problems, i.e.
problems such that their solutions do not depend on the particular choice of bases
in R

m, R
n and R

d in (1.1) or (1.2). In other words, when the original problem is
transformed to another basis, this transformed problem is solved, and its solution
is transformed back to the original basis, then this back-transformed solution is
identical to the solution obtained directly from solving original problem.

1.1 TLS problem

Various orthogonally invariant minimization techniques can be used for solving the
linear approximation problems. The thesis focuses on the total least squares (TLS)
concept. In the TLS also called orthogonal regression the correction is allowed to
compensate for errors in the system (data) matrix A as well as in the vector of
observations b. Thus in TLS, E and g are sought to minimize the Frobenius norm
in

min
x,E,g

∥∥ [
g E

] ∥∥
F

subject to (A + E)x = b + g , (1.3)

i.e., (b+g) ∈ R (A+E). In this section the theory of solving the TLS problems with
single right-hand sides is summarized. For better explanation and understanding
of presented theory including detailed proofs we refer to [6, 23].

In the whole section we consider AT b �= 0, in particular A �= 0, b �= 0. First,
it is worth to note that the TLS problem may not have a solution for a given data
A, b, see, e.g., [6]. In such cases without the TLS solution, when we try to reach the
greatest lower bound of the norm of the correction, the corresponding nonoptimal
solution grows to infinity (in norm) and contains components with arbitrary values.

Golub and Van Loan give in [6] a sufficient condition for existence of a TLS
solution. Consider an orthogonally invariant linear approximation problem (1.1).
In order to simplify the notation assume that m > n (add zero rows if necessary).
Denote σ′

j ≡ σj (A) the jth largest singular value of A, and u′
j and v′j the cor-

responding left and right singular vectors, respectively, j = 1 , . . . , n. Further
denote σj ≡ σj ([ b |A ]) the jth largest singular value of [ b |A ], and uj and vj the
corresponding left and right singular vectors, respectively, j = 1 , . . . , n + 1.

Let A be of full column rank (i.e. σ′
n > 0 and, subsequently, σn+1 = 0 iff the

system (1.1) is compatible) and let σn+1 be simple. Define the correction matrix
[ g |E ] ≡ − un+1 σn+1 vT

n+1, ‖[ g |E ]‖F = ‖[ g |E ]‖ = σn+1. The corrected matrix
[ b + g |A + E ] represents, by Eckart-Young-Mirsky theorem (see [23, Theorem2.3,
p. 31]), the unique best rank n approximation of [ b |A ] in the Frobenius norm (and
also in the 2-norm). Since σn+1 is simple, the correction as well as the corrected
matrices are unique. The right singular vector vn+1 represents a basis of the null
space of the corrected matrix, i.e. [ b + g |A + E ] vn+1 = 0.



1.1. TLS PROBLEM 3

If the first component of the vector vn+1 is nonzero, i.e. γ ≡ eT
1 vn+1 �= 0, then

scaling vn+1 such that the first component is equal to−1 gives[ −1
xTLS

]
≡ − 1

γ
vn+1 , and

[
b + g A + E

] [ −1
xTLS

]
= 0 .

Because σn+1 is simple, the corrected and the correction matrices are unique, thus
the vector xTLS represents the unique TLS solution of the problem (1.3). If the first
component of the vector vn+1 is zero, i.e. γ ≡ eT

1 vn+1 = 0, then the TLS problem
(1.3) does not have a solution, see also [6, 23].

Golub and Van Loan give in [6] a sufficient condition

σ′
n > σn+1 , (1.4)

for the existence of the TLS solution. See [6], see also [22], or [18, p. 203], [23, proof
of Lemma 3.1, pp. 64–65]. The condition (1.4) ensures that the smallest singular
value of the extended matrix [ b |A ] is simple and the corresponding right singular
vector has nonzero first component, and, subsequently, it ensures existence of the
TLS solution. This condition is, however, intricate because it is only sufficient but
not necessary for the existence of a TLS solution. (In fact, the condition (1.4) is
necessary and sufficient for the existence of the unique TLS solution.) If σ′

n = σn+1,
then it may happen either σn > σn+1 with eT

1 vn+1 = 0, which means that the
TLS problem does not have a solution, or σn = σn+1. In this case a TLS solution
still may exist or may not exist. Thus, now we focus on the case when the smallest
singular value of [ b |A ] is multiple, i.e. σn = σn+1.

Now, let A be of full column rank and let σn+1 be multiple. In particular there
is an integer p such that

σp > σp+1 = . . . = σn+1 .

The case p = n reduces to the previous case. If p = 0, i.e. σ1 = . . . = σn+1, then
[ b |A ]T [ b |A ] = σ2

1 In+1, and thus the columns of [ b |A ] are mutually orthogonal
(and σp is nonexistent). In this case the TLS problem has a nonunique solution,
and from the construction below it will be clear that the minimum 2-norm TLS
solution is trivial, xTLS = 0. Therefore for simplification of notation we consider
0 < p < n in the further text.

Since σn+1 is multiple, a minimal correction matrix reducing the rank of [ b |A ] to
n is no longer unique. For an arbitrary given matrix Q ∈ R

(n−p+1)×(n−p+1), Q−1 =
QT , denote ṽ ≡ [ vp+1 , . . . , vn+1 ] Q en−p+1, a unit vector from the right singu-
lar vector subspace associated with σn+1, and ũ ≡ [ up+1 , . . . , un+1 ] Q en−p+1,
the corresponding unit vector from the left singular vector subspace. The matrix
[ g |E ] ≡ − ũ σn+1 ṽT , ‖[ g |E ]‖F = ‖[ g |E ]‖ = σn+1, represents, by Eckart-
Young-Mirsky theorem, a minimal norm correction such that [ b + g |A + E ] is a
rank n approximation of [ b |A ]. Because Q is arbitrary, the correction as well as
the corrected matrices are not unique.

Similarly to the previous section, if eT
1 ṽ �= 0, then ṽ can be used for the con-

struction of a solution of the TLS problem (1.3), by scaling ṽ such that the first
component is equal to −1. Consequently, if there exists a vector with nonzero first
component in the subspace R ([ vp+1 , . . . , vn+1 ]), i.e. if eT

1 [ vp+1 , . . . , vn+1 ] �= 0,
then the TLS problem (1.3) has a solution, but, clearly, this solution is not unique.
The goal is to find the minimum 2-norm TLS solution.

Denote ṽ = ( γ̃ , wT )T ; the norm of the solution constructed from ṽ is equal
to γ̃−1 ‖w‖, where ‖w‖2 = ‖ṽ‖2 − γ̃2 = 1 − γ̃2. Thus the goal is to minimize
γ̃−1 (1− γ̃2)1/2, i.e., to maximize γ̃. The minimum 2-norm TLS solution is obtained
by choosing Q such that the first component of ṽ is maximal over all unit vectors
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in R ([ vp+1 , . . . , vn+1 ]). Put Q ≡ H , the Householder reflection matrix such that
eT
1 [ vp+1 , . . . , vn+1 ] H = [ 0 , . . . , 0 , γ ], where γ ≡ eT

1 [ vp+1 , . . . , vn+1 ], and
put v ≡ [ vp+1 , . . . , vn+1 ] H en−p+1. Scaling v gives the minimum 2-norm TLS
solution [ −1

xTLS

]
≡ − 1

γ

[
vp+1 , . . . , vn+1

]
H en−p+1 = − 1

γ
v ,

with ‖xTLS‖ = γ−1 (1 − γ2)1/2. If all (unit) vectors in R ([ vp+1 , . . . , vn+1 ]) have
zero first components, i.e. if eT

1 [ vp+1 , . . . , vn+1 ] = 0, then the TLS problem (1.3)
does not have a solution, see also [6, 23].

Van Huffel and Vandewalle give in [23] an equivalence which generalizes the
Golub, Van Loan condition (1.4) for the existence of a TLS solution. See [23,
Corollary 3.4, p. 65].

As already mentioned, an unpleasant situation occurs when the right singular
vector subspace associated with the smallest singular value σn+1 of [ b |A ] does not
contain a vector with nonzero first component. This situation is provided by the
fact that the correlation between columns of the matrix A is stronger than the
correlation between the column space of A and the right-hand side b. In such case
there is no right singular vector that can be used for construction of a solution.

The idea of the so called nongeneric concept is the following, see [23]: because
the solution can not be constructed from a vector corresponding to the smallest
singular value, we try to use another, bigger, singular value and the corresponding
left and right singular vectors for construction of a correction matrix and a solution.
But, such a solution does not solve the original TLS problem (1.3).

Recall that we still assume AT b �= 0 and m > n. Let σt > σn+1 be the
smallest singular value of [ b |A ] such that eT

1 vt �= 0, i.e. eT
1 [ vt+1 , . . . , vn+1 ] = 0

(this case includes all incompatible problems with rank deficient A, as mentioned).
Since V ≡ [ v1 , . . . , vn+1 ] is an orthogonal matrix, such a singular value always
exists. Put [ g |E ] ≡ ut σt vT

t , ‖[ g |E ]‖F = ‖[ g |E ]‖ = σt. Similarly to the
previous cases [ b + g |A + E ] vt = 0 and thus scaling the vector vt such that the
first component is equal to −1 gives the solution of the corrected system. This
solution is in [23] called nongeneric solution.

Obviously, if σt−1 = σt (with t > 1) or σt = σt+1 (with t < n), then the
correction as well as the solution are not unique. In the case of nonuniqueness
the goal is to find the minimum 2-norm nongeneric solution. In order to handle a
possible nonuniqueness define an integer p̃ such that

σp̃ > σp̃+1 = . . . = σt ≥ . . . ≥ σp > σp+1 = . . . = σn+1 .

If p̃ = 0, then it can be shown that the right-hand side b is orthogonal to the column
space of A, and from the construction below it will be clear that the minimum 2-
norm nongeneric solution becomes trivial, xNGN = 0 (and σp̃ is nonexistent).

Similarly to the case with nonunique solution there exists a Householder re-
flection matrix such that eT

1 [ vp+1 , . . . , vn+1 ] H = [ 0 , . . . , 0 , γ ], where γ ≡
eT
1 [ vp+1 , . . . , vn+1 ]. Further put u ≡ [ up̃+1 , . . . , un+1 ] H en−p̃+1, and v ≡

[ vp̃+1 , . . . , vn+1 ] H en−p̃+1. The matrix [ g |E ] ≡ − u σt vT has Frobenius norm
(and also the 2-norm) equal to σt. Scaling v such that the first component is equal
to −1 gives the minimum 2-norm nongeneric solution[ −1

xNGN

]
≡ − 1

γ

[
vp̃+1 , . . . , vn+1

]
H en−p̃+1 = − 1

γ
v ,

see [23].
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Now, we already described all the possibilities that can occur. It remains to
justify the addition of zero rows in (1.1) in order to satisfy the condition m > n,
and to show that the incompatible problem with rank deficient matrix A does not
have a TLS solution. Both can be easily shown through the core problem concept.

1.2 Core problem theory of Paige and Strakoš

Assuming AT b �= 0 and that the approximation problem (1.1) is orthogonally
invariant, i.e. that the solution is independent on a particular choice of bases in R

m

and R
n, it easy to see that there exists an orthogonal transformation of the form

PT
[

b A
] [

1 0
0 Q

]
= PT

[
b AQ

]
=

[
b1 A11 0
0 0 A22

]
, (1.5)

where P−1 = PT , Q−1 = QT , and where A22 might have row and/or column
dimensions equal to zero. In the nontrivial case (when A22 has at least one row
and one column, even if A22 = 0) both the singular value decompositions (SVD) of
[ b |A ] and A can be easily got as a direct sum of the SVDs of the blocks [ b1 |A11 ]
and A22, and A11 and A22, respectively. The original approximation problem Ax ≈
b is in this way decomposed into two independent approximation subproblems,

A11 x1 ≈ b1 , A22 x2 ≈ 0 , where x ≡ Q

[
x1

x2

]
.

The second subproblem A22 x2 ≈ 0 has a trivial solution x2 = 0, and thus only
the first subproblem A11 x1 ≈ b1 needs to be solved, see [17]. Paige and Strakoš
formulate the following definition.

Definition 1.1 (Core problem). The subproblem A11 x1 ≈ b1 is a core problem
within the approximation problem Ax ≈ b if [ b1 |A11 ] is minimally dimensioned
(and A22 maximally dimensioned) subject to (1.5).

For any transformation (1.5) the subproblem A11 x1 ≈ b1 contains all the sufficient
information for solving the original problem. Since the core problem is the minimally
dimensioned subproblem, i.e. the subproblem can not be reduced more, it must
contain all the sufficient and only the necessary information for solving Ax ≈ b.

Understanding of the minimal dimensionality of A11 x1 ≈ b1 can be gained by
the following construction, which shows how to concentrate the relevant information
into A11 and b1, while moving the irrelevant and redundant information into A22,
see [17]. Let A have rank r and consider the SVD of A = U ′ Σ′ (V ′)T , Σ′ ≡
diag ( Ξ , 0 ), Ξ ≡ diag (σ′

1 , . . . , σ′
r ). Moreover assume only k of the nonzero

singular values of A to be distinct. Consider (U ′)T b = [ cT
1 , . . . , cT

k | cT
k+1 ]T the

partitioning with respects to the multiplicities of the singular values of A.
The singular values are unique in any SVD representation. But their ordering,

and sometimes some singular vectors, are not unique. In order to obtain the core
problem, the matrix (U ′)T [ b |AV ′ ] will be transformed further, while maintaining
the SVD of A. For cj , choose an orthogonal matrix Hj (e.g. the Householder
reflection matrix) such that Hj cj = e1 δj , where δj ≡ ‖cj‖, for j = 1 , . . . , k , k+
1. Then put G ≡ diag (H1 , . . . , Hk , Hk+1 ), H ≡ diag (H1 , . . . , Hk , In−r ),
and replace the matrix U ′ by U ′ G and V ′ by V ′ H . This transformation will leave
Σ′ unchanged and therefore preserves the SVD of A. In this way the vector c is
transformed into a vector having at most one nonzero component corresponding to
each block of equal singular values of A, and therefore the original right-hand side
vector b is transformed into a vector having at most k + 1 nonzero entries. Clearly,
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δj �= 0, j = 1 , . . . , k, if and only if the right-hand side b has nonzero projection
onto the corresponding left singular vector subspace of A (i.e., δ1 = . . . = δk = 0
iff b ⊥ R), and finally δk+1 �= 0 iff b �∈ R (A). Next permute the columns of U ′ G
and V ′ H identically, in order to move the zero elements in the transformed c to the
bottom of this vector, leaving d, the subvector of c with nonzero components only,
at the top, while keeping Ξ diagonal. Finally if δk+1 �= 0 move its row so that δk+1

is immediately below d by a further permutation from the left to give, with obvious
new notation and indexing,

(U ′ GΠL )T [
b A ( V ′ H ΠR )

]
=

⎡
⎣ d Ξ1 0

δk+1 0 0
0 0 Ξ2

⎤
⎦ (1.6)

the matrices ΠL, ΠR denote the permutations from the left and right, respectively,
the vector d contains only the nonzero scalars δ1 , . . . , δk, the matrix Ξ1 is diagonal
with simple and nonzero singular values; the row beginning with the scalar δk+1

is nonexistent iff the problem (1.1) is compatible. The final partitioning in (1.6)
corresponds to that in (1.5) with P ≡ U ′ GΠL and Q ≡ V ′ H ΠR. Denote m̄,
and n̄ ≡ k the dimensions in (1.6) such that A11 ∈ R

m̄×n̄, x1 ∈ R
n̄, and b1 ∈ R

m̄;
obviously n̄ ≤ m̄ ≤ n̄ + 1.

It can be easily shown that the subproblem A11 x1 ≈ b1 obtained by the trans-
formation process (1.6) described above has indeed the desired minimality property,
and thus it represents the core problem within Ax ≈ b, see also [17]. The core
problem in the form given in (1.6) is called the SVD form of the core problem.

A decomposition of the form (1.5) can also be computed directly by choosing
orthogonal matrices P and Q in order to reduce [ b |A ] to a real upper bidiagonal
matrix, see [17]. It can be done using for example Householder reflection matrices,
see [7, §5.4.3, pp. 251–252]. The first zero element on the main diagonal or on the
first superdiagonal determines the desired partitioning. The matrix A22 needs not
be bidiagonalized. Alternatively the partial Golub-Kahan iterative bidiagonalization
algorithm [5, 16] can be used. Putting w0 ≡ 0 and the starting vector s1 ≡ b/β1,
where β1 ≡ ‖b‖, the algorithm computes for j = 1 , 2 , . . .

αj wj ≡ AT sj − wj−1 βj ,

βj+1 sj+1 ≡ Awj − sj αj ,
(1.7)

where ‖wj‖ = 1, αj ≥ 0, and ‖sj+1‖ = 1, βj+1 ≥ 0, until αj = 0 or βj+1 = 0,
or until the dimensions of A are exceeded, i.e. j = min {m , n }. Consider αj > 0,
βj > 0, for j = 1 , . . . , k, and βj+1 > 0, and denote Sj ≡ [ s1 , . . . , sj ], Wj ≡
[ w1 , . . . , wj ],

Lj ≡

⎡
⎢⎢⎢⎣

α1

β2 α2

. . .
. . .

βj αj

⎤
⎥⎥⎥⎦ ∈ R

j×j and Lj+ ≡
[

Lj

βj+1e
T
j

]
∈ R

(j+1)×j .

The Golub-Kahan bidiagonalization (1.7) of the matrix A with s1 ≡ b/‖b‖ yields
one of the following two situations: if αj > 0, βj > 0, j = 1 , . . . , ñ, and
βñ+1 = 0 or ñ = m, then ST

ñ AWñ = Lñ; or if αj > 0, βj > 0, j = 1 , . . . , ñ,
βñ+1 > 0, and αñ+1 = 0 or ñ = n, then ST

ñ+1 AWñ = Lñ+. In both cases, the
matrices Sñ or Sñ+1, and Wñ represent the first ñ or ñ + 1 columns of the matrix
P , and the first ñ columns of the matrix Q in (1.5), respectively. The Golub-Kahan
algorithm (1.7) yields the core problem, i.e., ñ ≡ n̄, such a core problem is called
the banded (bidiagonal) form of the core problem.
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A subproblem representing the core problem has several properties. We sum-
marize the most important of them:

(G1) The matrix A11 is of full column rank equal to n̄.

(G2) The right-hand side b1 is of full column rank (i.e., b1 is nonzero).

(G3) The matrices (U ′
j)

T b1 are of full row rank for all j, where U ′
j denotes an

orthonormal basis of the left singular vector subspace corresponding to the
jth distinct singular value of A11.

(G4) The matrix [ b1 |A11 ] is of full row rank.

(G5) The matrix A11 has no zero or multiple singular values, so any zero singular
values or repeats that A has, must appear in A22.

It is worth to note that there also exists an alternative definition of the core
problem using properties (G1), (G3). This definition is used in the presented thesis
for the first time, there is also showed the equivalence with the Paige and Strakoš
definition used [17].

Further, the basic properties of a core problem can be derived from the rela-
tionship between the Lanczos tridiagonalization and the Golub-Kahan bidiagonal-
ization, and from the properties of Jacobi matrices, see [13] by Hnětynková and
Strakoš, [14] by Hnětynková, Strakoš and the author of the thesis, and [15] the
doctoral thesis of Hnětynková.

The core problem plays an important role in the TLS formulation. Let Ax ≈ b
be a linear approximation problem and Ã11 x̃1 ≈ b̃1 the core problem within Ax ≈
b in the bidiagonal form. Because αj > 0 and βj > 0 for j = 1 , . . . , n̄, the
matrix ÃT

11 Ã11 is a Jacobi matrix, in both cases. Similarly [ b̃1 | Ã11 ]T [ b̃1 | Ã11 ] is a
Jacobi matrix – thus, all its eigenvalues are simple, all its eigenvectors have nonzero
first and last components. The matrix [ b̃1 | Ã11 ]T [ b̃1 | Ã11 ] contains ÃT

11 Ã11 as a
trailing principal submatrix, which is crucial in the forthcoming analysis.

From the properties of Jacobi matrices, it follows that the eigenvalues of the
matrix [ b̃1 | Ã11 ]T [ b̃1 | Ã11 ] are strictly interlaced by the eigenvalues of ÃT

11 Ã11.
Because the singular values are independent on the given form of the core problem,
we omit tildes in the further text; we obtain in the incompatible case, both matrices
A11 and [ b1 |A11 ] have distinct and nonzero singular values and the singular values
of A11 strictly interlace the singular values of [ b1 |A11 ],

σn̄ (A11) > σn̄+1 ( [ b1 |A11 ] ) . (1.8)

Appending the right-hand side vector b1 to the core problem matrix A11 decreases
the smallest singular value. The core problem always satisfies the Golub, Van Loan
condition (1.4) and thus it always has the unique TLS solution (i.e., the smallest
singular value σn̄+1 ([ b1 |A11 ]) is simple and the corresponding right singular vector
has nonzero first component).

It remains to compare the solution x ≡ Q [ xT
1 | 0 ]T obtained using the core

problem transformation (1.5) to all the TLS formulation in [6, 23]. Let Ax ≈ b
be a general linear approximation problem and A11 x1 ≈ b1 a core problem within
Ax ≈ b obtained by a transformation to the form (1.5). Denote for simplicity
x1 the unique TLS solution of this core problem. Now, the question is, what this
solution represents in the original variables.

Assume m > n (add zero rows if necessary), moreover we focus on the incom-
patible case, i.e. b �∈ R (A). Consequently the matrix [ b1 |A11 ] is square and the
matrix A22 is either square (iff m = n + 1), or is has more rows than columns.
Denote σmin (M) the smallest singular value of M for simplicity (for all [ b1 |A11 ],
A11 and A22, the index of the smallest singular value is equal to the number of their
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columns). Recall that the SVD of [ b |A ] can be obtained as a direct sum of SVDs
of [ b1 |A11 ] and A22, just by extending the singular vectors corresponding to the
first block by zeros on the bottom and the singular vectors corresponding to the
second block by zeros on the top.

There are three different possibilities:
Case A. If

σmin (A22) > σmin ( [ b1 |A11 ] ) ,

then, because σmin (A11) > σmin ([ b1 |A11 ]) by (1.8), the smallest singular value of
[ b |A ] is simple and σn (A) > σn+1 ( [ b |A ] ). Consequently the original problem
Ax ≈ b has by (1.4) the unique TLS solution. The TLS solution of the original
problem is given by this right singular vector and obviously it is identical to the
solution of the core problem transformed back to the original variables, i.e. xTLS ≡
Q [ xT

1 | 0 ]T .
Case B. If

σmin (A22) = σmin ( [ b1 |A11 ] ) ,

then the smallest singular value of [ b |A ] is multiple and it is equal to σn (A). The
Golub, Van Loan condition (1.4) is no more satisfied. From (1.8) it follows that the
multiplicity of the smallest singular value of A increase by appending the right-hand
side b. The original problem Ax ≈ b has a TLS solution but it is not unique. The
minimum norm TLS solution of the original problem is given by the right singular
vector of v� = diag ( 1 , Q ) v̄�, i.e. it is identical to the solution of the core problem
[ b1 |A11 ] transformed back to the original variables, i.e. xTLS ≡ Q [ xT

1 | 0 ]T .
Case C. If

σmin (A22) < σmin ( [ b1 |A11 ] ) ,

then the singular values σn (A) ≡ σn+1 ([ b |A ]) ≡ σmin (A22) have the same mul-
tiplicities. All the right singular vectors corresponding to σn+1 ([ b |A ]) have zero
first components. The original problem Ax ≈ b does not have a TLS solution. The
(minimum 2-norm) nongeneric solution of Ax ≈ b is given by the solution of the
core problem transformed back to the original variables, i.e. xNGN ≡ Q [ xT

1 | 0 ]T .
Summarizing, for any approximation problem (1.1) the vector x ≡ Q [ xT

1 | 0 ]T ,
where x1 is the unique TLS solution of the core problem within Ax ≈ b, represents
the corresponding minimum 2-norm solution given in [6, 23]. For the given Ax ≈ b
it is reasonable, and Paige and Strakoš in [17] also recommended, first to find a
core problem A11 x1 ≈ b1 using orthogonal transformations (or by Golub-Kahan
iterative bidiagonalization), then solve the core problem A11 x1 ≈ b1, put x2 = 0,
and define the solution of the original problem define as x ≡ Q [ xT

1 | 0 ]T . The
assumption x2 = 0 here does not follow from a theory, it is a postulate: do not mix
the useful (necessary and sufficient) information with the useless data contained in
A22 in the solution of Ax ≈ b. Consequently the core problem theory is consistent
with earlier work and it explains and clarifies the concept of nongeneric solution.
The nongeneric concept becomes justified although the minimum 2-norm nongeneric
solution does not solve the TLS problem (1.3).

Clearly, from the core problem concept,

σmin (A22) ≥ σmin ( [ b1 |A11 ] ) (1.9)

is the necessary and sufficient condition for the existence of a TLS solution. (If
the matrix A22 is trivial, i.e. it has no columns, then the problem always has the
unique TLS solution.)
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1.3 Goals of the thesis

The thesis focuses on solution of an orthogonally invariant linear approximation
problem with multiple right-hand sides AX ≈ B through the TLS concept. The
main goal of the thesis is to generalize the analysis of the TLS concept given for
problems with single right-hand sides in [6, 23, 17] and to build up a consistent
theory which would cover the multiple right-hand sides case.

For a problem with multiple right-hand sides, a partial generalization of the
TLS concept was presented by S. Van Huffel and J. Vandewalle in [23]. They cover
some particular cases for which they define a TLS solution. They also present an
algorithm which for any data gives an output, which is, however, not identified
with a theoretically justified TLS theory. Therefore we attempt in Chapter 3, as
the first goal of the presented thesis, to revise and complete, within our abilities,
their analysis.

C. C. Paige and Z. Strakoš proved in [17] that for a problem with a single right-
hand side Ax ≈ b there is a reduction which determines a core problem A11 x1 ≈
b1 within the original problem, with all necessary and sufficient information for
solving the original problem. The core problem always has the unique TLS solution,
and, using the transformation to the original variables, it gives the solution of
the original approximation problem identical to the minimum 2-norm solutions of
all TLS formulations given in [6, 23]. The core problem theory represents a new
approach to understanding of the TLS concept. It makes the theory complete and
transparent, and it also fundamentally changes a view to practical computations.
The second goal of the presented thesis is therefore to extend the core problem
theory, if possible, to problems with multiple right-hand sides. The reduction based
on the SVD of A, motivated by the work of D. M. Sima and S. Van Huffel [20, 21],
is given in Chapter 4. Another approach, based on a banded generalization of the
Golub-Kahan bidiagonalization algorithm, is given in Chapter 5, motivated by the
series of lectures [1, 2, 3] by Å. Björck, and also the work [17, 13, 14, 15] of C. C.
Paige, Z. Strakoš, I. Hnětynková and partially of the author of this thesis.

Chapter 6 investigates the relationship between the SVD-based and the banded
reduction approaches. An extension of the minimally dimensioned subproblem con-
cept to the multiple right-hand side case has some difficulties. In particular, the
minimally dimensioned reduced subproblem may not have a TLS solution.

Core problem computation in finite precision arithmetic must resolve a problem
of relevant stopping criteria. Difficulties connected with revealing of core problem
are illustrated on examples in Chapter 7. We do not address this question fully in
the thesis, but present an example of the noise-revealing property of the Golub-
Kahan bidiagonalization, which can be very useful in hybrid methods for solving
ill-posed problems, see Chapter 8.

The thesis ends with conclusions, some open questions and directions for further
research, in Chapter 9.
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Chapter 2

Main results of the thesis

In this chapter we summarize the main results of the presented thesis related to the
TLS problems with the multiple right-hand sides (1.2). These results are organized
as follows: in Section 2.1 there are summarized results from Part II (Chapter 3)
of the thesis; the results from Part III (Chapters 4, 5, and 6) are summarized in
Section 2.2; and Section 2.3 contains results form Part IV (Chapters 7 and 8).

Some particular results related to the TLS problems with the single right-hand
sides are already mentioned in Introduction. These are: the alternative definition of
the core problem within the problem with single right-hand side based on the prop-
erties (G1), (G3), see Definition 1.3 in Section 1.4.3 in the thesis (there is shown
the equivalence with the Paige and Strakoš definition used in [17]). The second
result related to the problems with single right-hand sides is an alternative proof
of core problem properties using the relationship between the Lanczos tridiagonal-
ization and the Golub-Kahan bidiagonalization and using the properties of Jacobi
matrices. See Section 1.4.4 in the thesis and see also [14].

2.1 Theoretical fundamentals of total least squares

formulation in A X ≈ B

In Chapter 3 we summarize results of Van Huffel and Vandewalle [23] for the prob-
lems with multiple right-hand sides. In [23] there are two basic problem cases (both
simply extend the single right-hand side case) for which exists a TLS solution and
a wide class of problems for which the solution does not exist (we denote it S ). In
[23] there is an algorithm which is commonly used (or its variants) for solving TLS
problems. It is well known that this algorithm computes either a TLS solution (if
it is applied on the basic two cases mentioned above), or so called nongeneric solu-
tion when a problem belongs to the class S . We give a theorem which guarantees
existence of a TLS solution for the wider class of problems (including the two basic
cases). Furthermore this theorem shows that the existence of a class of problems for
which a TLS solution exists but the algorithm by Van Huffel, Vandewalle does not
compute it. We briefly introduce the used notation and then we give the theorem
and a basic classification of the TLS problems.

Consider an orthogonally invariant linear approximation problem (1.2). We
assume AT B �= 0 and m ≥ n + d (add zero rows if necessary). Consider a SVD
of [ B |A ] = U Σ V T , s ≡ rank ( [ B |A ] ), where Σ = diag (σ1 , . . . , σs , 0), and
σ1 ≥ . . . ≥ σs > σs+1 = . . . = σn+d ≡ 0. In order to handle a possible

11
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multiplicity of σn+1 we introduce the following notation

σn−q > σn−q+1 = . . . = σn︸ ︷︷ ︸
q

= σn+1 = . . . = σn+e︸ ︷︷ ︸
e

> σn+e+1 , (2.1)

where q singular values to the left and e − 1 singular values to the right are equal
to σn+1, and q ≥ 0, e ≥ 1. For convenience we denote n − q ≡ p. If q = n, then
σp is nonexistent. Similarly, if e = d, then σn+e+1 is nonexistent. It will be useful
to consider the following partitioning:

V =

[
V

(q)
11 V

(q)
12

V
(q)
21 V

(q)
22

]
, (2.2)

where V
(q)
11 ∈ R

d×(n−q), V
(q)
12 ∈ R

d×(d+q), V
(q)
21 ∈ R

n×(n−q), V
(q)
22 ∈ R

n×(d+q).

Theorem 2.1. Let [ B |A ] = U Σ V T be the SVD with the partitioning given by
(2.2). If rank (V (q)

12 ) = d, then consider an orthogonal matrix Q̃ such that[
V

(q)
12

V
(q)
22

]
Q̃ =

[
Ω Γ̃
Ỹ Z̃

]
, Q̃ =

[
Q̃1 Q̃2

]
(2.3)

where Q̃1 ∈ R
(q+d)×q, Q̃2 ∈ R

(q+d)×d, and Γ̃ ∈ R
d×d is nonsingular, and define

[
G E

] ≡ − [
B A

] [
Γ̃
Z̃

] [
Γ̃
Z̃

]T

= − [
up+1 , . . . , un+d

]
diag (σp+1 , . . . , σn+d )

Q̃2 Q̃T
2

[
vp+1 , . . . , vn+d

]T
.

(2.4)

Then the following two assertions are equivalent:

(i) There exists an index k, 0 ≤ k ≤ e < d, and an orthogonal matrix Q̂ in the
block diagonal form

Q̂ =
[

Q′ 0
0 Id−k

]
∈ R

(q+d)×(q+d) , Q′ ∈ R
(q+k)×(q+k) , (2.5)

and using Q̂ in (2.3), (2.4) instead of Q̃ gives the same [ G |E ].

(ii) The matrix [ G |E ] satisfies

∥∥ [
G E

] ∥∥
F

=

⎛
⎝ n+d∑

j=n+1

σ2
j

⎞
⎠1/2

. (2.6)

The matrix [ G |E ] represents a correction that makes the problem compatible
and which has by (ii) minimal Frobenius norm. Then the matrix X ≡ − Z̃ Γ̃−1

represents a TLS solution.

Then Chapter 3 of the thesis analyzes when such Q̂ exists We consider the fur-
ther partitioning of the matrix V

(q)
12 = [ W (q,e) |V (−e)

12 ], where W (q,e) ∈ R
d×(q+e),

V
(−e)
12 ∈ R

d×(d−e). The complete classification is presented on Figure 2.1 on p. 16,
it quickly recapitulates properties of problems and differences between problems in
the individual classes.
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2.2 Data reduction

In Chapters 4, 5, and 6 the thesis extends the core problem concept of Paige and
Strakoš [17] to the problems with multiple right-hand sides. We show that for a
general orthogonally invariant linear approximation problem (1.2) there exist or-
thogonal matrices P , Q, R which transform the original data [ B |A ] into the block
form

PT
[

B A
] [

R 0
0 Q

]
=

[
PT B R PT AQ

]
≡

[
B1 0 A11 0
0 0 0 A22

] (2.7)

where B1 and A11 are of minimal dimensions and all irrelevant and redundant
information is thus moved into the block A22.

Chapter 4 investigates a transformation of the form (2.7) based on the subse-
quent SVD decompositions of the right-hand side matrix B, then of the system
matrix A, and finally SVDs of the blocks of the already transformed right-hand
side. Note that in the single right-hand side it is sufficient to use only the SVD
of A. In Chapter 4 there is also shown the existence of another transformation
which uses LQ decomposition instead of the first SVD of B, SVD of A, and QR
decompositions of the blocks of the transformed right-hand side, giving the same
dimensions of the reduced problem. Thus it is sufficient to use only one SVD in the
multiple right-hand side case, too. Any such transformation yields a subproblem
A11 X1 ≈ B1 having, in analogy to the single right-hand side case, the following
properties:

(G1) The matrix A11 ∈ R
m̄×n̄ is of full column rank equal to n̄ ≤ m̄.

(G2) The matrix B1 ∈ R
m̄×d̄ is of full column rank equal to d̄ ≤ m̄.

(G3) Let ς ′j be the singular value of A11 with the multiplicity rj , let U ′
j be the

matrix with the corresponding orthonormal singular vectors as its columns.
Then the matrices (U ′

j)
T

B1 ≡ Dj ∈ R
rj×d̄ are of full row rank equal to

rj ≤ d̄, for j = 1 , . . . , k + 1.

(G4) The extended matrix [B1 |A11 ] ∈ R
m̄×(n̄+d̄) is of full row rank equal to m̄ ≡

n̄ + rk+1 ≤ n̄ + d̄.

(G5) The matrix A11 does not have any zero singular value. Its singular values
have multiplicities equal to at most d̄.

Moreover, the reduction which uses the subsequent SVDs (not the LQ or QR de-
compositions) yields a subproblem having special properties:

(S1) The matrix A11 ∈ R
m̄×n̄ is diagonal with positive components sorted in non-

increasing sequence on the main diagonal.

(S2) The matrix B1 ∈ R
m̄×d̄ has mutually orthogonal nonzero columns, sorted in

a nonincreasing sequence with respect to their norms.

(S3) The matrices (U ′
j)

T
B1 ≡ Dj ∈ R

rj×d̄ have mutually orthogonal nonzero
rows sorted in a nonincreasing sequence with respect to their norms, for j =
1 , . . . , k + 1.

Chapter 5 investigates a transformation of the form (2.7) based on banded gener-
alization of the Golub-Kahan iterative bidiagonalization algorithm. This algorithm
was proposed by Å. Björck [1, 2, 3], and D. M. Sima, S. Van Huffel [20, 21] for this
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purpose. This chapter starts with the description of the banded algorithm. Fur-
thermore it summarizes some obvious properties of the obtained subproblem which
has a structure illustrated by the following example:

[
B̃1 Ã11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 β12 β13 α1

γ2 β23 β24 α2

γ3 β34 β35 α3

γ4 β45 β46 α4

γ5 β57 α5

γ6 β68

γ7 α6

γ8 α7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where αi > 0, γj > 0. These obvious properties are namely (G1), (G2), and (G4).
In order to show the other properties and motivated by the work [13, 14, 15]

we define a wedge-shaped matrices – a class of symmetric banded matrices. In
Chapter 5 there is proven that eigenvalues and eigenvectors of wedge-shaped ma-
trices have some important properties which in some way generalize properties of
Jacobi matrices. (See Sections 5.5.1, Eigenvalues of generalized Jacobi matrices;
5.6.1, Eigenvectors of generalized Jacobi matrices; 5.6.2, Eigenspaces of generalized
Jacobi matrices.) We show that the matrices [B̃1 | Ã11 ]T [B̃1 | Ã11 ], ÃT

11 Ã11, and
Ã11 ÃT

11 are wedge-shaped. This allows us to show that the banded subproblem
has properties (G3) and (G5), too. Moreover we showed some further properties of
the banded subproblem, for example that the matrix [ B̃1 | Ã11 ] has singular values
with multiplicities equal to at most d̃ ≡ rank (B).

In Chapter 6 of the thesis we show that the properties (G1)–(G3) guarantee min-
imality of the dimensions of the problem A11 X1 ≈ B1 obtained by the SVD-based
reduction as well as Ã11 X̃1 ≈ B̃1 obtained by the banded algorithm. Thus both
of these reduced problems represents the same subproblem which is the minimal
subproblem of the original problem. We define the core problem within a problem
with multiple right-hand sides analogously to Paige and Strakoš in [17].

Definition 2.1 (Core problem). The subproblem A11 X1 ≈ B1 is a core problem
within the approximation problem AX ≈ B if [ B1 |A11 ] is minimally dimensioned
(and A22 maximally dimensioned) subject to (2.7).

We further use the properties (G1)–(G3) for an alternative definition of a core
problem in the multiple right-hand side case.

Definition 2.2 (Core problem). Any approximation problem AX ≈ B having
properties (G1)–(G3) is called a core problem.

Further the Chapter 6 investigates the question whether the core problem in
the multiple right-hand side case has a TLS solution. We show on an example
that the core problem with the multiple right-hand sides can contain two or more
independent subproblems (also having properties (G1)–(G3)). The independence of
such subproblems within a core problem can cause that the core problem does not
have a TLS solution even if all its subproblems have TLS solutions. The question
how to identify such composed core problem and how to decompose it is not resolved
yet in the thesis.
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2.3 Implementation, computations, and related is-
sues

Chapters 7 and 8 focus on computation of a core problem in the single right-hand
side case and applicability of the presented theory in hybrid methods.

The computation of a core problem (in the single right-hand side case) is always
based on the partial Golub-Kahan iterative bidiagonalization algorithm. Chapter 7
summarizes the well known facts about the stable implementation of the bidiagonal-
ization and on an example investigates a sensitivity of a computation. An artificially
constructed problem contains a core problem with known dimensions, the matrix
A22 (see (1.5)) is multiplied by a positive scalar γ. We observe the computed bidi-
agonal components depending on the value of γ. It can be observed that the core
problem identification is more difficult with growing norm of γ A22.

Chapter 8 investigates application of bidiagonalization in the hybrid methods for
solving ill-posed problems Ax = b with the right-hand side polluted by a (white)
noise, i.e. b ≡ bexact + bnoise. The presented hybrid approach uses information
about the noise level in the data revealed by the Golub-Kahan bidiagonalization.
We analyze the left vectors from the bidiagonalization in the frequency domain.
(Similar approach based on the analysis of residual vectors in frequency domain is
discussed in [12, 10].)

We illustrate on an example shaw(400), see [8], the noise propagation in the
left vectors from the Golub-Kahan bidiagonalization, see Figure 2.2 on p. 17. We
implement an experimental hybrid method based on this observation with inner
TSVD regularization. This method gives satisfactory results on the considered
example and we believe that a similar idea can be used in practical problems. In
our further work we aim to focus on construction of an effective stopping criteria
for hybrid methods based on the discrepancy principle.
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Figure 2.2: The first eighty Fourier coefficients of the left vectors
from the Golub-Kahan bidiagonalization in the trigonometric ba-
sis; computed by fft MATLAB command. The noise level is
maximal in the vector s18 then it is partially projected out in s19.
All graphs are in logarithmic scale with range 10−8–100.
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Chapter 3

Conclusions and open
questions

In this chapter we summarize results presented in the thesis. We formulate some
open questions and mention some possible directions for further work.

3.1 Conclusions

Part I (Chapter 1) of the thesis summarizes fundamentals of the total least squares
theory in the single right-hand side case based on the work of Golub, Van Loan,
Van Huffel, Vandewalle, Paige, Strakoš and others. Parts II and III of the pre-
sented thesis investigate an extension of the concept of the core reduction of Paige
and Strakoš to a general unitary invariant linear algebraic approximation problem
AX ≈ B; we focus on the problems with multiple right-hand sides.

First, in Part II (Chapters 2, and 3), starting from the results of Van Huffel and
Vandewalle, we investigate the fundamental question of the existence of the TLS
solution, and present a basic classification of the TLS problems. It is shown that
the formulation of the TLS problem with multiple right-hand sides is significantly
more complicated than the single right-hand side TLS problem and the results of
Chapter 3 reflect the difficulties which have been revealed in our work on the subject.

The data reduction in Part III (Chapters 4, 5, and 6), which aims at the mini-
mally dimensioned core problem containing the necessary and sufficient information
for solving the problem with the original data, starts with the SVD-based transfor-
mation, which extends the work of Paige and Strakoš. Another reduction, in the
single right-hand side case described by Paige, Strakoš, Hnětynková and the author
of this thesis is based on the banded generalization of the Golub-Kahan iterative
bidiagonalization, as suggested by Å. Björck and D. M. Sima. Using some proper-
ties of the class of generalized Jacobi matrices we investigate further properties of
the suggested banded form of the reduced problem.

We have presented the proof of minimality of the SVD-based form as well as the
banded form, and proved their equivalence. This allows to define the core problem
for problems with multiple right-hand sides. In particular, we relate the solvability
of the reduced problem obtained via the core problem approach to the result of the
classical TLS algorithm by S. Van Huffel applied directly on the original problem.
We showed that the solution computed by the classical TLS algorithm of Van Huffel
is not necessarily the TLS solution of the given approximation problem.

Contrary to the single right-hand side case, the core problem may not have the
TLS solution. We describe so called decomposable core problems and show that
there exists a whole class of decomposable core problems which do not have the

19
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TLS solution. Because the core problems in the problems with single right-hand
sides are non decomposable, its TLS solution always exists. We formulate, with
some ambiguity, the following conjecture:

Conjecture 3.1. Any non decomposable core problem has the unique TLS solution.

In decomposable core problems that we have presented the difficulty is caused by the
fact that the problem links together data from different independent subproblems.
If Conjecture 3.1 is correct, then the decomposing of decomposable core problem
reveals the hidden structure of independent subproblems which should be treated
separately. Then the obtained solution naturally differs form the solution obtained
by the classical TLS algorithm by Van Huffel and Vandewalle which considers all
data in one problem.

If Conjecture 3.1 is not correct, then the TLS formulation for the problems with
multiple right-hand sides lacks in some cases a consistently defined solution. We still
do not know how to identify and decompose all decomposable problems. Therefore
we were unable to prove or disprove Conjecture 3.1.

Part IV (Chapters 7, and 8) of this thesis presents on an example a possible
hybrid method for solving ill-posed problems, this method uses the Golub-Kahan
bidiagonalization and it is based on core problem ideas, concerning fundamental
data decomposition while accumulating necessary and sufficient data in a partially
constructed A11 block. It is shown that the Golub-Kahan iterative bidiagonalization
can be used for revealing the level of noise present in the data. In the example
we combine the outer regularization accomplished by the bidiagonalization (the
Lanczos-type process), which projects the original problem onto a Krylov subspace
of small dimensions, with inner TSVD regularization.

Numerical results are presented. Unfortunately, they are not yet compared with
results obtained by other hybrid methods. We believe that the presented idea can
be used in practical computations as a contribution towards building efficient and
reliable stopping criteria of the outer iterative process.

3.2 Open questions and possible directions for fur-

ther research

Now we shortly summarize some questions which are interesting in the context of
the material presented in this thesis but which are out of the scope of the presented
text. In Part II, one can ask about the relationship between the TLS solution
and the solution computed by the algorithm by Van Huffel, Vandewalle, and about
an interpretation of such a relationship in application areas such as computational
statistics. Similarly, it is desirable to give a possible statistical interpretation of the
decomposability of the (core) problem. We believe that the statistical point of view
and its combination with the matrix computation point of view can help in getting
further understanding.

We are well aware of many important questions related to practical implementa-
tions and computations. For example, one can expect that a suitable preprocessing
of the matrix right-hand side B can improve the behavior of the banded gener-
alization of the Golub-Kahan algorithm. Numerical behavior can be studied in
relationship with the block Lanczos algorithm.

Numerical analysis and solution of ill-posed problems illustrated in Part IV pro-
duces in the context of the core problem approach many very interesting problems.
The presented noise-revealing idea is certainly worth of further effort. Hybrid meth-
ods for large ill-posed problems represent a very hot topic in scientific computing.
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mentals of total least squares problems, 13th Czech-French-German Confer-
ence on Optimization Heidelberg, Germany, September 17–21, 2007.

Local conferences (talks and posters)
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[1] Åke Björck: Bidiagonal Decomposition and Least Squares, Presentation,
Canberra (2005).
(http://wwwmaths.anu.edu.au/events/sy2005/odatalks/canb05.pdf)
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