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Abstrakt

Jak je zndmo, zaokrouhlovaci chyby a nepiesné feSeni vnitinich iloh maji vliv na
numerické chovani itera¢nich metod; obecné snizuji jejich rychlost konvergence
a ovliviiuji kone¢nou piesnost spocteného feSeni. V préci se zabyvame analyzou
maximdlni dosazitelné presnosti nékterych iteraCnich metod pro feSeni soustav
linedrnich algebraickych rovnic.

Dizertace je rozd€lena na dvé ¢asti. Prvni z nich obsahuje analyzu limitni pfes-
nosti metod krylovovskych podprostori pro feSeni rozsdhlych iloh sedlovych
bodl. Uvazujeme dva typy segregovanych metod: metodu redukce na Schurtiv
doplnék a metodu projekce na nulovy prostor mimodiagonélniho bloku. Ukazuje
se, Ze vybér vzorce pro zpétnou substituci md vliv na maximadlni dosazitelnou
presnost priblizného reSeni spocteného v aritmetice s kone¢nou piresnosti.

Druhd ¢ast obsahuje analyzu numerického chovdni nékterych metod minimdlnich
rezidui, které jsou matematicky ekvivalentni metodé zobecnénych minimdlnich
rezidui GMRES. Srovndvame dva hlavni postupy: jeden, kde pfiblizné feSeni je
vypocteno ze soustav s horni trojihelnikovou matici, a jeden, kde je pfiblizné
feSeni upravovdno pomoci jednoduchého rekurentniho vzorce. Ukazuje se, Ze
vybér bdze md vliv na numerické chovani vysledné implementace. Zatimco me-
tody Simpler GMRES a ORTHODIR jsou méné stabilni diky §patné podminé-
nosti zvolené bdze, bdze zkonstruovand z rezidui mize byt dobfe podminéng,
jestlize jsou normy rezidui dostate¢né klesajici. Tyto vysledky vedou k nové im-
plementaci, kterd je podminéné zpétné stabilni, a v jistém smyslu i vysvétluji
experimentdlné ovéfeny fakt, ze metoda GCR (ORTHOMIN) déva v praktickych
aplikacich velmi presné aproximace feSeni.

Klicova slova. Rozsdhlé linedrni soustavy, metody krylovovskych podprostort,
ulohy sedlového bodu, metoda redukce na Schuriiv doplnék, metoda projekce na
nulovy prostor mimodiagondlniho bloku, metody minimdalnich rezidui, numericka
stabilita, analyza zaokrouhlovacich chyb.






Abstract

It is known that inexact solutions of inner systems and rounding errors affect
the numerical behavior of iterative methods. In particular, they slow down their
convergence rate and have an effect on the ultimate accuracy of the computed
solution. Here we focus on the analysis of the maximum attainable accuracy of
several iterative methods for solving systems of linear algebraic equations.

The thesis is divided into two parts. The first part is devoted to the analy-
sis of Krylov subspace solvers applied to the large-scale saddle point problems.
Two main representatives of segregated solution approaches are analyzed: the
Schur complement reduction method and the null-space projection method. We
show that the choice of the back-substitution formula can considerably influence
the maximum attainable accuracy of approximate solutions computed in finite
precision arithmetic.

In the second part we analyze numerical behavior of several minimum residual
methods, which are mathematically equivalent to the GMRES method. Two
main approaches are compared: the approach, which computes the approximate
solution from an upper triangular system, and the approach where the approx-
imate solutions are updated with a simple recursion formula. We show that a
different choice of the basis can significantly influence the numerical behavior
of resulting implementation. While Simpler GMRES and ORTHODIR are less
stable due to ill-conditioning of chosen basis, the residual basis remains well-
conditioned when we have a reasonable residual norm decrease. These results
lead to a new implementation, which is conditionally backward stable, and in
a sense explain an experimentally observed fact that the GCR (ORTHOMIN)
method delivers in practical computations very accurate approximate solutions
when it converges fast enough without stagnation.

Key words. large-scale linear systems, Krylov subspace methods, saddle point
problems, Schur complement reduction, null-space projection method, minimum
residual methods, numerical stability, rounding error analysis.
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AnHOoTaIUAa

W3BecTHO, 9TO HEAKKypPAaTHBIE PELIEHNS BHYTPEHHUX IPOobaeM m OmmOKKM OKPYTACHUSI
OTPa’KAIOTCA Ha BBIYUCAUTEABHOM IIOBEAEHWIO MTEPAIIMOHHBIX MeTOA0B. OHM KOHKDET-
HO 3aTOPMO3ST WX CKOPOCTb CXOAMMOCTY M OKa3bIBAIOT BAHUSHNE HAa (DMHANABHYIO aK-
KyPaTHOCTDb BEIYMCAEHHOrO permreHus. MEI 3A6Ch 3aHIMAEMCS aHAAM30M MaKCHMAaABHOR
AOCTHXUMOY aKKYPATHOCTY HEKOTOPHIX UTEPAIIMOHHBIX METOAOB AAS PEIIEHUSI CUCTEM
AVHEAHBIX aarebpamdecKuxX ypaBHEHUH.

OTa pmccepTanus pa3AeAeHa Ha ABe JacTH. [lepBas 3aHWMAETCS aHAAM3OM AMMHUTHON
AKKYDPaTHOCTH METOAOB IIPOCTPAHCTB KpEIAOBA AAS PEMIEHES HOABIINX CUCTEM CEAEAB-
HBIX TOYEK. MBI pacCMaTpUBAEM ABA THUILI CETPETAIIMOHHLIX METOAOB: METOAOM IIPE06-
pasoBaHUS Ha AomoAHeHWe Illypa um METOAOM IPOEKIWM HA SAPO MUMOAMATOHAABHOTO
6a0ra. Ml yra3pIBaeM, 49TO BBIOOD (POPMYABI OOPATHOM IIOACTAHOBKH OTPA’kaeTCI Ha
MaKCHMAABHOR AOCTMXUMOY aKKYPATHOCTH NPUOAMIUTEABHOTO PEIIEHNS BEIYUCAEHHO-
r'o B apu(pMeTHUKE C KOHEIHON TOIHOCTHIO.

BTopas 9acTb COAEPKUT aHAANS BEIYUCAUTEABHOTO IOBEACHNST HECKOABKUX METOAOB MU-
HUMAaAbHBIX HEBSI30K, KOTOPBIE MAaTEMATUIECKY dKBUBaAEHTHEIE MeTOAY «GMRESy. Mb1
CpPaBHUBAEM ABa I'AaBHBIE METOABI: OAWH, KOTOPBIM ONpeAeAsIeT IPUOAMIKEHHOE PELIEHNE
73 CHCTEMEI C BEPXHEW TPEYTrOABHOY MATPHWIION, M OAWH, A IPUOAMIKEHHOE DEIIEHUE
KOPPEKTHPOBAHHOE C IIOMOIILIO IPOCTOR PEKYPPEHTHON (DOPMYALL. MEI yKa3bIBAEM, ITO
BBIOOD 6a3BI OTPa’KaETCs Ha BRIYUCAWTEABHOM IIOBEAEHUY KOHEYHOI'O MeToAa. IIoka Mme-
TopR!l «Simpler GMRESy u «ORTHODIR» meHee cTabmABHBIE 32 CIET IIAOXO 0OYCAOB-
AEHHOU 6a3bl, 6a3a HEBSI30K MOKET OBITH XOPOIIO 00YCAOBAEHHAS, ECAM HOPMBI HEBSI30K
AOCTATOYHO CHUIKAIOTCS. DTH PE3YABTATHl BEAYT K HOBOMY METOAY, KOTOPEBIX yCAOBHO
06paTHO CTAaOMABHEIA, ¥ B OIPEAEAECHHOM CMEICAE OOBICHSIIOT SKCIEPHMEHTAABHO YAQ-
croBepeHHbIH akT, uro Merop «GCR» (Takyke m3BecTHbl Kak «ORTHOMIN») paér
B IPAKTUYECKAX ANMIAVKAINWSAX O9€Hb aKKyPAaTHBIE AIIPOKCHMAIIIY PEIICHUS.

KumroueBbie cjioBa. 60abIIme AMHEHHBIE YPaBHEHHUS, METOABI IIPOCTPAHCTB KpPEIAOBA,
MeTop, mpeobpa3oBanus Ha pomoaHeHme Lllypa, METOA HPOEKIWY Ha SIAPO MHMOAWATO-
HaABHOTO O/OKa, METOABI MUHVMAABHBIX HEBSI30K, BEIYMCAUTEABHAS CTaOUABHOCTD, aHa-
AF3 OIIKOOK OKPYTAEHHUST.






Contents

Abstrakt
Abstract
AnHoTanus

Chapter 1. Introduction
1. The state of the art
2. Organization of the thesis
3. List of related publications and conference talks

Chapter 2. Main results of the thesis
1. Limiting accuracy of segregated saddle point solvers
2. Numerical stability of some residual minimizing iterative methods

Chapter 3. Conclusions and open questions

Bibliography

vil

iii

(> TNY N O I T S

© ©

15
19
23






CHAPTER 1

Introduction

Consider a system of linear algebraic equations in the form
(1) Az = b,

where A is an N x N nonsingular matrix and b is a right-hand side vector. Usually
we assume that A is large and sparse as it is, e.g., when A is a discrete representation
of some partial differential operator. We are looking for the solution of (1) or for its
sufficiently accurate approximation.

The methods for solving (1) are usually classified as direct and iterative. Direct methods
are mostly based on the successive elimination of unknowns. They factorize the system
matrix (with suitably ordered rows or columns), e.g., into the product of lower and upper
triangular matrices as in the Gaussian elimination, or to the product of an orthogonal
and a triangular matrix as in the QR factorization. The solution of (1) can be then
found by solving systems with these factors. In general, direct methods are well suited
for dense and moderately large systems. However, when solving a large sparse system,
the number of newly created non-zero elements in both factors can heavily affect the
computational time and storage requirements. In addition, even though direct methods
deliver in theory the exact solution, there is no need for such an accuracy in practice
due to uncertain data or discretization errors.

Therefore, iterative methods became very popular when solving sparse systems. An
iterative method for the solution of (1) generates a sequence of approximations zj so
that they ideally converge to the exact solution. The system matrix need not to be ex-
plicitly stored. In each iteration we need only to perform a matrix-vector multiplication.
Moreover, the approximations converge often monotonously (or almost monotonously)
in some fixed norm and so we can stop the iteration process when the approximation
is accurate enough. However, the convergence rate of iterative methods can be slow in
general (depending on properties of the system) and thus hybrid techniques combining
the iterative and direct approach, such as preconditioned iterations, are widely used to
make the process more efficient.

In general, a solution method (no matter if a direct or iterative one) can be interpreted
as a solution of a sequence of subproblems which are simpler to solve. In direct methods
we can identify following subproblems: the factorization of the system matrix and the
solution of systems with computed factors. In each step of an iterative method, we
multiply a vector by the system matrix and optionally solve the system with a precondi-
tioner which can be also regarded as the subproblems solved repeatedly in the iteration

1



2 CHAPTER 1. INTRODUCTION

loop. E.g., the matrix-vector multiplication can involve the solution of an inner system
as in the Schur complement reduction method which we will discuss later.

1. The state of the art

From now on we restrict ourselves to iterative methods. In practice, the computations
are affected by errors. They are never performed exactly due to rounding errors and
some of them are done inexactly with a prescribed level of accuracy, especially when
computations with the working accuracy could be a waste of time and resources. E.g.,
matrix-vector products may involve a solution of inner systems, which (being large and
sparse) can be solved inexactly with another iterative method. Preconditioning can
be also applied through some iterative process. Usually, a method is called inexact
if some involved subproblems are solved only approximately even though we assume
exact arithmetic. Rounding errors can also considerably affect the behavior of iterative
methods. Since the behavior of inexact iterative methods and “exact” methods in finite
precision arithmetic is similar, we will not strictly distinguish between the sources of
errors and we will treat them commonly in a unified approach in the following discussion.

When an inexactness is taken into account, there are several important questions which
need to be answered. In the following we give a brief overview of the state of art in
this field (including results in finite precision arithmetic). Generally the inexactness
introduced in an iterative method has two main effects:

e The errors caused by inexact computations are propagated throughout the
iterative process. Ideally the error propagation should be restrained so that the
local errors are not magnified. There is a limit in the accuracy which cannot
be exceeded and it is usually called the maximum attainable (or limiting)
accuracy.

e The convergence of an inexact iterative method can be delayed with respect
to the convergence of the same method, where all computations are performed
exactly. We may ask how many additional iterations should be performed such
that the same accuracy is attained as in the ideal (exact) case.

In this thesis we focus on the limiting accuracy of inexact iterative methods. The
effects of inexact matrix-vector multiplications in iterative methods (also referred as
relaxed methods) on the maximum attainable accuracy were studied simultaneously
by van den Eshof and Sleijpen [59], and by Simoncini and Szyld [54]. Their analysis
explains the experimental results of Bourass and Frayssé [7] (the report with an extensive
experimental basis was published in 2000) who proposed a relaxation strategy for the
accuracy of the computed matrix-vector product. They have shown that to achieve the
prescribed accuracy of the computed solution we need to compute the matrix-vector
product with the accuracy (measured by the backward error) inversely proportional
to the actual residual norm. The papers [59, 54| provide the theoretical support for
this strategy further developed in [60]. This topic is closely related to the flexible
preconditioning, see, e.g., [4, 21, 46, 54, 18]. Here we try to adopt the backward error



1. THE STATE OF THE ART 3

analysis, widely used in the study of rounding errors, and we analyze the effects of inexact
computations on the limiting accuracy of certain iterative methods. The computations
are performed in the presence of rounding errors while solutions to certain subproblems
are done with more relaxed accuracy. We want to know how the inexactness of these
inner systems together with the errors caused by roundoff affect the behavior of the
considered algorithms. It appears that some measures of the accuracy are ultimately on
the level proportional to the unit roundoff, while other measures depend on the accuracy
of inner systems.

The problem of numerical stability of classical iterative methods was addressed in several
papers. The first analyzes carried out by Golub [19] and Lynn [42] provide statistical and
non-statistical results for the second order Richardson and SOR method. The statistical
error analysis of classical iterative methods was also performed by Arioli and Romani
[2] clarifying the relation between the conditioning of the preconditioned system matrix
and the convergence rate of the iterative method. In [33] Higham and Knight give the
forward and backward error analysis of a general one-step stationary method. Their
analysis among other things shows that the accuracy of the computed solution strongly
depends on the oscillations of norms of the iterates which is a common observation not
only in the case of classical iterative methods. Moreover, even though the convergence
is driven by the spectral radius of the iteration matrix, the limiting accuracy depends
rather on the norm of its powers which can be arbitrarily large in the early stage of
the iterative process. This was observed by Hammarling and Wilkinson [30]. The
stability of classical iterative methods was also analyzed by Wozniakovski in [67, 68].
He proved the forward stability of classical methods like Jacobi, Richardson, Gauss-
Seidel and SOR (for symmetric systems with the Property A) and Chebyshev method
(for symmetric positive definite systems). However, the Chebyshev method appeared to
be not normwise backward stable. In [20] Golub and Overton discuss the convergence
rate of the second order Richardson and Chebyshev method. They consider the inexact
solution of inner systems with uniformly bounded relative residuals. The accuracy of
the computed solution in the Chebyshev method is further analyzed by Giladi, Golub
and Keller [17] who show the optimality of the uniform tolerance used in [20]. When
the system is solved by the classical iterative method in each step we must solve a
simpler system induced by the splitting of the system matrix. However, these systems
can be also solved iteratively. These methods, referred to as two-stage methods, were
addressed, e.g., in [44, 37, 16].

One of the most important result in the study of Krylov subspace methods is due to Paige
[47]. He provides the analysis of the behavior of the symmetric Lanczos algorithm [38]
in the presence of rounding errors. This algorithm is closely related to the conjugate
gradient method by Hestenes and Stiefel [31]. It was first studied by WozZniakowski
[69] and Bollen [6]. Wozniakowski shows that this method converges in finite precision
arithmetic at least linearly with the convergence rate similar to the steepest descent
method. However, his analysis does not reflect the reality very well, since the convergence
of the conjugate gradient method cannot be characterized locally but its actual behavior
depends on the whole iteration process; see, e.g., [61, 41] and the references therein. The
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new insight into this problem was brought by Greenbaum [23] and further developed
together with Strako§ [58, 27]. It appears that the finite precision Lanczos process as
well as the finite precision conjugate gradient method behave as their exact counterparts
applied to the matrix of (possibly much) larger dimension with the eigenvalues clustered
near the eigenvalues of the original matrix. This issue was further discussed by Notay
in [45].

The analysis of limiting accuracy of some classes of iterative methods can be performed in
rather general setting without referring to any particular method. The methods based on
the coupled two-term recurrences were analyzed by Greenbaum in [24, 25]. The papers
focus mainly on the conjugate gradient method but the analysis holds for a larger set
of methods. In particular, the results of Greenbaum show that the highly irregular
convergence behavior (expressed by the oscillations of norms of iterates) observed in
the case of non-optimal iterative methods (such as BiCG [15] or CGS [56]) can have
an unfavorable effect on the limiting accuracy of the computed solution. A similar
phenomenon is mentioned also by van der Vorst in [62], where the loss of accuracy is
explained by oscillations of residual norms. On the other hand, such oscilations do not
occur (or can be a priori bounded) in the case of optimal methods such as conjugate
gradients and conjugate residuals [57] applied to symmetric positive definite problems,
or in the case of residual minimizing methods (Orthodir [70], Orthomin [64], GCR
[12]) for general nonsymmetric systems. The numerical stability of various (equivalent)
methods using short recurrences was further studied by Gutknecht and Strako$ in [29]
and by Sleijpen, van der Vorst and Modersitzki in [55]. In [28] Gutknecht and Rozloznik
discuss the effect of residual smoothing on the limiting accuracy.

Finally we survey the results for the finite precision behavior of nonsymmetric Krylov
subspace methods with the full-term recurrences such as GMRES [53]. The House-
holder implementation of the underlying Arnoldi process [3] is quite straightforward to
analyze, see the paper by DrkoSovd, Greenbaum, Rozloznik and Strako§ [11], and by
Arioli and Fassino [1]. This is due to the almost exact orthogonality of the computed
Krylov subspace basis. However, when we use the cheaper modified Gram-Schmidt im-
plementation, the orthogonality is gradually lost during the iteration process. The loss
of orthogonality however goes hand in hand with the decrease of the backward error of
the actual computed solution as observed by Greenbaum, Rozloznik and Strako$ in [26]
and further analyzed by Paige, Rozloznik and Strako§ in [49, 48]. For more details see
[40] and the references therein.

2. Organization of the thesis

This thesis is divided into two main parts and is organized as follows. Chapter 3, which
is based on the papers [35, 34], is devoted to the analysis of inexact methods for solving
saddle point problems of the form

(&) 6)=0)
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A brief overview on saddle point problems is presented in Chapter 2. We analyze
two segregated methods based on the transformation of the whole indefinite prob-
lem to a reduced system with more preferable properties (smaller dimension, positive
(semi)definiteness). The reduced system is solved by a suitable iterative method giving
the approximations to one of the block components of the solution vector (z or y). The
remaining component is computed via some back-substitution formula. We consider
three different but mathematically equivalent formulas. In each iteration we have to
solve either a nonsingular system with A, or a full rank least squares problem with B.
Since such systems are not usually solved exactly, we assume here that they are solved
with a prescribed backward error and study the effect on the maximum attainable accu-
racy of the solution method together with the effects of rounding errors. Such inexact
methods have been also considered in many papers but most of them analyzed the delay
of convergence; see the references in Chapter 3. Here we provide a qualitative analysis of
the maximum attainable accuracy of the computed solution measured by true residuals
in the saddle point system, by true residuals in reduced systems and by forward errors of
the computed solutions. In addition, we show which residuals (and how) can be affected
by the possibly irregular convergence behavior in the case of the nonsymmetric block A.
The theoretical results are illustrated on numerical experiments.

Chapter 4, based on the paper [36], is devoted to the analysis of several residual mini-
mizing Krylov subspace methods, which are mathematically equivalent to the GMRES
method [53]. In contrast to GMRES, they, in the nth iteration, build an orthonormal
basis of AK, (A, 1) instead of K,(A4,70): Kn(4,7o) denotes the nth Krylov subspace
generated by the matrix A and the vector ry,. T'wo approaches are compared: the ap-
proach, which computes the approximate solution from an upper triangular system,
and the approach, where the approximate solutions are updated step by step with a
simple recursion formula. We consider a general basis to generate the orthonormal ba-
sis of AK,(A, 7o), and it appears that, while Simpler GMRES and ORTHODIR are
less stable due to ill-conditioning of the chosen basis, the residual basis can be well-
conditioned, when we have a reasonable residual norm decrease. These results lead to
a new implementation, which is conditionally backward stable, and to the well known
GCR (ORTHOMIN) method, and in a sense explain an experimentally observed fact
that GCR (ORTHOMIN) delivers very accurate approximate approximate solutions in
practical applications. The theoretical results are illustrated on numerical experiments.

In Chapter 5 we give conclusions and directions of the future work.
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3. List of related publications and conference talks

Journal papers.

e P. Jirdnek, M. Rozloznik. Maximum attainable accuracy of inexact saddle
point solvers. Accepted for publication in STAM Journal on Matriz Analysis
and Applications, 2007.

e P. Jirdnek, M. Rozloznik. Limiting accuracy of segregated solution methods
for nonsymmetric saddle point problems. Accepted for publication in Journal
of Computational and Applied Mathematics, 2007.

e P. Jirdnek, M. Rozloznik, M. H. Gutknecht. How to make Simpler GMRES
and GCR more stable. Submitted to SIAM Journal on Matriz Analysis and
Applications, 2007.

Proceedings contributions.

e P. Jirdnek. On a maximum attainable accuracy of some segregated techniques
for saddle point problems. Proceedings of the XI. PhD. Conference, pages
26—-34, Institute of Computer Science, CAS, Matfyzpress, Prague, 2006.

e P. Jirdnek, M. Rozloznik. On a limiting accuracy of segregated techniques
for saddle point problems, Proceedings of the 3rd International Workshop
on Simulation, Modelling and Numerical Analysis SIMONA 2006, pages
62-69, Liberec, September 2006.

Conference talks.

e P. Jirdnek, M. RozloZnik. Numerical behavior of iterative methods for saddle
point problems. GAMM Annual Meeting 2006, Berlin, March 27-31, 2006.

e P. Jirdnek. On a maximum attainable accuracy of some segregated techniques
for saddle point solvers. XI. PhD. Conference, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Moninec — Sedlec-Préice, Septem-
ber 18-20, 2006.

e P. Jirdnek, M. Rozloznik. On a limiting accuracy of segregated techniques for
saddle point solvers. Simulation, Modelling and Numerical Analysis SIMONA
2006, Liberec, September 18-20, 2006.

e P. Jirdnek, M. Rozloznik. Numerical solution of saddle point problems. SNA'07,
Seminar on Numerical Analysis, Ostrava, January 22-26, 2007.

e P. Jirdnek, M. Rozloznik. On the limiting accuracy of segregated saddle point
solvers. MAT-TRIAD 2007 - three days full of matrices, Bedlewo, Poland,
March 22-24, 2007.

e P. Jirdnek, M. Rozloznik. On the limiting accuracy of segregated saddle point
solvers. VIII. vedeckd konferencia s medzindrodnou icastou, Technical Uni-
versity of KoSice, Slovakia, May 28-30, 2007.



3. PUBLICATIONS AND CONFERENCE TALKS 7

e P. Jirdnek, M. Rozloznik. Limiting accuracy of inexact saddle point solvers.
22nd Biennial Conference on Numerical Analysis, University of Dundee, Scot-
land, UK, June 26-29, 2007.

e P. Jirdnek, M. Rozloznik, M. H. Gutknecht. On the stability of Simpler GM-
RES. CEMRACS’07, Lumini, France, Juny 22-August 31, 2007.

e P. Jirdnek, M. Rozloznik, M. H. Gutknecht. How to make Simpler GMRES
and GCR more stable. IMA Conference on Numerical Linear Algebra and
Optimisation, University of Birmingham, UK, September 13-15, 2007.

3.1. Posters.

e P. Jirdnek, M. Rozloznik. Numerical stability of inexact saddle point solvers.
ICIAM'07, 6th International Congress on Industrial and Applied Mathematics,
Zurich, Switzerland, July 16-20, 2007.






CHAPTER 2

Main results of the thesis

1. Limiting accuracy of segregated saddle point solvers

In this section we summarize the results of the first part of the thesis. Consider the
solution of a saddle point system in the block form

(& 3) ()= ()

where the diagonal block A € R™*"™ is symmetric positive definite, and the off-diagonal
block B € R™*™ has the full column rank. The solution vector and the right-hand side
vector are partitioned consistently with respect to the partitioning of the system ma-
trix. Saddle point problems have recently attracted a lot of attention and appear to be
a time-critical component in the solution of large-scale problems in many applications of
computational science and engineering. A large amount of work has been devoted to a
wide selection of solution techniques varying from the fully direct approach, through the
use of iterative stationary or Krylov subspace methods up to the combination of direct
and iterative techniques including preconditioned iterative schemes. For the excellent
survey on applications, methods and results on numerical solution of saddle point prob-
lems we refer to [5] and numerous references therein. Significantly less attention however
has been paid so far to the numerical stability aspects. We concentrate on the numerical
behavior of schemes which compute separately the unknown vectors z and y: one of
them is first obtained from a reduced system of a smaller dimension and once it has
been computed, the other unknown is obtained by the back-substitution solving exactly
or inexactly another reduced problem. The main representatives of such a segregated
approach are the Schur complement reduction method and the null-space projection
method. Here we analyze such algorithms which can be interpreted as iterations for
the reduced system but compute the approximate solutions z; and yx to both unknown
vectors = and y simultaneously.

We concentrate on the question what is the best accuracy we can get from the Schur
complement reduction method and the null-space projection method when inner sys-
tems are solved with a prescribed accuracy in finite precision arithmetic. The fact that
the inner solution tolerance strongly influences the accuracy of computed iterates is
known and was studied in several contexts. The general framework for understanding
inexact Krylov subspace methods has been developed in [54] and [59]. Assuming ex-
act arithmetic, the authors of [54] and [59] investigated the effect of an approximately
computed matrix-vector product in every iteration on the ultimate accuracy of several

9



10 CHAPTER 2. MAIN RESULTS OF THE THESIS

solvers and explained the success of relaxation strategies for the inner accuracy toler-
ance from [7, 8, 18]. The developed theory strongly exploits the particular properties
of an iterative method used for solving the associated system. In the context of saddle
point problems this requires a deep analysis of the outer iteration scheme for solving the
reduced Schur complement or projected system.

The theory developed here for the outer iteration process is similar to the analysis of
Greenbaum in [25, 24] who estimated the gap between the true and recursively updated
residual for a general class of iterative methods using coupled two-term recursions. The
difference here is that every computed approximate solution of inner problem is in-
terpreted as an exact solution of a perturbed problem induced by the actual stopping
criterion, while the theory of [25] considered only the rounding errors associated with
a fixed matrix-vector multiplication. In contrast to the theory of inexact Krylov meth-
ods [54, 59] the bounds for the true residual in the outer iteration loop are obtained
without specifying the solver used for solving the Schur complement or the projected
Hessian system. It appears that the maximum attainable accuracy level in the outer
process is mainly given by the inexactness of solving the inner problems and it is not
further magnified by the associated rounding errors. These results are thus similar to
ones which can be obtained in exact arithmetic.

The situation is different when looking at the numerical behavior of residuals associ-
ated with the original saddle point system, which describe how accurately are the two
block equations of (2) satisfied. It is shown that the attainable accuracy of computed
approximate solutions then depends significantly on the back-substitution formula used
for computing the remaining unknowns. Our results show that independently of the
fact that the inner systems are solved inexactly some back-substitution schemes lead
ultimately to residuals on the roundoff unit level.

1.1. Schur complement reduction method. The Schur complement reduction
method uses the equivalent formulation of (2) in the form

(@ ert5) (3) = (srd )

which is nothing but a block Gaussian elimination applied to (2). This block triangular
system is solved by computing the unknown y from the symmetric positive definite
Schur complement system

(3) BTA'By=BTA'f
and then by computing the unknown z from a system
(4) Az = f — By.

Here we discuss algorithms which compute simultaneously approximations yi; and zj
solving iteratively the Schur complement system (3) and ideally fulfill the first block
equation of (2), i.e., they satisfy

Az, + Byr = f.
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Without specifying any particular method, we assume that we have computed the ap-

proximate solution y; and the residual vector r,(ci)l using the recursions

(v)

() Ye+1 = Y + 0Py
(6) r¥) =7 1 0, BTA ' BplY)

with r{¥) = ~BTA=(f — Byo). We distinguish between the following three mathemat-
ically equivalent back-substitution formulas

(7) Trs1 = i + ap(— A Bpl),
(8) Tes1 = A N(f — Byrsa),
(9) Tkt+1 = Tk + A_l(f — Az, — Bygy1).

These schemes have been used and studied in the context of many applications, in-
cluding various classical Uzawa algorithms, two-level pressure correction approach or
inner-outer iteration method for solving (2). Because the solves with matrix A in (7)-
(9) are expensive, these systems are in practice solved only approximately. Our analysis
is based on the assumption that every solution of a symmetric positive definite system
with the matrix A is replaced by an approximate solution produced by an arbitrary
method. The resulting vector is then interpreted as an exact solution of the system with
the same right-hand side vector but with a perturbed matrix A + AA. We require that
the relative norm of the perturbation is bounded as ||AA|| < 7||A||, where T represents
a backward error associated with the computed solution vector, and we assume that
the perturbation AA does not exceed the limitation given by the distance of A to the
nearest singular matrix and put restriction in the form 7x(A4) < 1.

Using (5) and (6), we can estimate the gap between the true residual in the outer
iteration, i.e., the residual in the Schur complement system (3), and the updated residual

r,(cy) as

_ pT g-1 T p-1pg _ #¥)) < O(7)x(4)
|| B A f+BA Byk Tk ||_1—TK,(A)

where Y}, is defined as a maximum norm over all computed approximate solutions Y3 =
max;—o,..k ||7||. While the updated residual f,(cy) converges to zero, the true residual
stagnates at the level proportional to 7. On the other hand, the accuracy measured by
the residuals f — A%y — By and —B7Z; in (2) depends on the particular choice of the
back-substitution formula. No matter how we compute the approximations Z; and g,

we have

(10) ~BTA'f + BTA'Bg, = —-BTz;, — BTA (f — AZi, — B)

which gives the mutual relation between the residual —BTA~'f + BT A~ By in the
Schur complement system (3) and the residuals f — AZ — By and —B7T %, associated
with the saddle point system (2). Since || - BTA'f + BT A"1Byy|| is ultimately O(7),
it is clear from (10) that both f — AZy — By and — BT %, cannot be proportional to the
roundoff unit u.

LA IIBICIAN + 1Bl V%)
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In the update scheme (7), the true residual f — AZ;, — B satisfies the bound
O(7)x(4)
1—-71Kk(A)

and the gap between the residuals —B7Z) and F,(Cy) can be estimated as

If — AZx — Bl < (11l + 1| BIIYx),

- B3, - 72 < LA BN + 119,

Hence this scheme guarantees that the residual —B7Z; will ultimately reach the level
of O(u) independently on the fact that the inner systems are solved with the relaxed
accuracy given by the parameter 7.

In the direct substitution scheme (8), the true residual f — AZy — By satisfies the bound
O(7)x(4)
1—7kK(A)

and the gap between the residuals —BTz, and f,(cy) can be bounded as follows

O(1)k(A)
1—7kK(A)
In this most straightforward scheme, both residuals thus stagnate ultimately on the level
of O(T).

In the corrected direct substitution scheme (9), the true residual f — AZy — By satisfies

I - 43~ Bl < TUl)

If — AZx — Byl < A+ 1B ),

| — BTz, — 7Y < IA~YIBIIIF ]| + 1| BIYx)-

(£l + 1IBI7)

for all steps k starting from some kp, where ?,fo = mMaX;—ko,... k

|¥;||- The gap between
—~BTz; and f,s,y) can be estimated as follows

O(7)x(4)
T—7x(4)
The convergence of ||f — AZ, — Bkl is driven by the stationary iteration with the
norm of the iteration matrix bounded by O(7)k(A)/(1 — 7k(A)) and after some initial

stage the residual converges ultimately to the level of O(u). However, the second block
equation of (2) is satisfied to the accuracy given by 7.

| — BTz, — 7Y < LA YIBIIIF ]| + 1| Bl %)

Independently of the chosen back-substitution formula, the ultimate levels of error norms
|z — Zx|| and ||y — ¥k|| are O(7) as indicated by the estimates

Iz — Zll <7llf — AZx — BTl +72ll — BTz,

ly — el < 72llf — AZk — Bil| + 73l — BTz,

where v, = 0.} (A), %2 =0} (B) and 73 = 0.}, (BT A~ B) are constants independent

of the iteration step k&, and depend on the conditioning of the blocks A and B. In practice,
these blocks can be ill-conditioned and in such cases the constants v;, 72 and 73 may
play an important role.
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1.2. Null-space projection method. The null-space projection method is based
on the projection of the first block equation in (2) onto the null-space N(BT) and onto
its orthogonal complement, the range R(B). Denoting by II the orthogonal projector
onto R(B), we first compute the unknown z € N(BT) from the projected system

(11) (I -MA(I —T)z = (I — II)f

with the symmetric positive semi-definite matrix (I —ITI)A(I —1II), and then the unknown
y is obtained as y = BT(f — Az) by solving the least squares problem

If — Az — By|| = min [|f — Az — By||.

We discuss algorithms which compute simultaneously approximations zp and yr by
solving iteratively the projected system (11) and minimize the residual norm f — Azy —
Buyy, i.e., Yri1 is given by yry1 = BI(f — Azy,1). We assume that the approximate

solution zr; and the residual vector r,(ci)l are computed using

(12) Tl = Tk + akpé“”),
(13) rem =i — axApy — Bpy,

where r((f) = BY(f — Azp). The vectors zo and p,(f) belong to N(BT) and pﬁj’) solves the

problem Bp(ky) R rl(f) - akAp,(f) minimizing the residual

I — o ap” — Bl = min |Iri” — axAp”) — Bal|

This residual update strategy was proposed in [22] (see also [10, 9]) and it is used to
reduce the roundoff errors in the projection onto N(BT). Again we distinguish between
three back-substitution formulas

(2)

(14) er1 =y + ), Y = Bi(r(®) — 0 Apl),
(15) Ykr1 = BI(f — Azpi),
(16) Yei1 = Yx + BI(f — Azr1 — Byp).

The pseudoinverse BT in (14)-(16) is applied by solving the least squares with the matrix
B. These problems are solved inexactly. In our considerations we assume that the
computed solution ¥ of a least squares problem Bv = cis an exact solution of a perturbed
problem (B + AB)v =~ ¢ + Ac with ||AB||/||B|| < 7 and ||Ac||/||c|]| < 7. The parameter
T again represents the measure for inexact solution of the least squares with B and
actually it describes the backward error. This can be achieved in many different ways
considering the inner iteration loop solving the associated system of normal equations,
the augmented system formulation or solving it directly. We assume 7x(B) < 1 which
guarantees B + AB to have a full column rank.
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Using (12) and (13), we can estimate the gap between the true residual in the outer
iteration, i.e., in the projected system (11), and the updated residual f,(f) as

O(7)x(B)
1 —7K(B)

where Xj, = max;—o, .k ||Z:||. While the updated residual F,(f) converges to zero, the true
residual stagnates at the level proportional to 7 independently on the back-substitution
formula. Moreover, we ideally have (B+AB)T# = 0 which implies | — BTZ|| < 7||B||||Z]|.
Therefore we can expect that also the residual —B7Z; associated with the computed
approximate solution Zj will be proportional to 7. Such analysis is dependent on the
choice of a particular method with the recurrences (12) and (13) and we do not give
it here. In accordance with [25] it seems reasonable that the bound for —BTZ, is
proportional to the factor Xy, i.e.,

(I - T)f — (I - A - )z, — (I - 77| < (£ + 1Al Xx)-

O B 5
H _BTEkH S (T)H || X..
1 —7k(B)
It is clear that no matter how we compute Z; and §, we have the following relation
between (I —II)f — (I — I)A(I — I1)Zx, f — AZx — Byx and — BTz,

(1) (I -T)f — (I - A - W)z = (I - T)(f — AZx — Bfi) + (I — 1) Allzs.

Owing to our assumption, the norm of — BT %y is finally on the level of O(7). We have
that ||(I —II)f — (I — IT)A(I — II)Z|| is ultimately O(7) and, on the other hand, the
norm of the projection of f — AZ; — By onto N(BT) reaches the level of O(u). It is
not clear from (17) whether the whole residual f — AZ; — By will be ultimately O(7)
or O(u). It strongly depends on the back-substitution scheme.

In the updated scheme (14), the gap between the residuals f — AZ, — By and f,(f) can

be bounded as
O(u)k(B)

DU+ 14lZe),

s p @) < OWK(B)
||f AZBk Byk Tk ||_ 1_7_’{,( )

Thus using the simple update formula makes the first component of the residual in (2)
stagnating ultimately on the level proportional to unit roundoff.

In the direct substitution scheme (15), the gap between the residuals f — AZy — B and

7*) can be bounded as

I - 42— By — (1~ ) < TN+ Al fael)
Ow)K(B) ]
+ DO UA) + 14152

Comparing this scheme with the generic update formula, the first component of the
residual in (2) ultimately stagnates on the level proportional to the parameter 7.
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In the corrected direct substitution scheme (16), the gap between the residuals f — AZy —

By, and 7\”) can be bounded as

O(u)x(B)
1 —7k(B)
for all k£ large enough. This scheme gives a similar accuracy as the generic update but
it costs one additional solution of the least squares problem with B.

If — AZy, — B — (I - 7)) < (I1£1l + 1Al %)

For the error norms, we have the same results as in the case of the Schur complement
method — they do not depend on the back-substitution scheme and ultimately stagnate
on the level proportional to 7.

2. Numerical stability of some residual minimizing iterative methods

In this section we summarize the results of the second part of the thesis. We consider
certain Krylov subspace methods for solving a system of linear algebraic equations

(18) Az =b, AeRV¥N  peRY,

where A is a large and sparse nonsingular matrix that is, in general, nonsymmetric.
A Krylov subspace method builds a sequence of iterates z, (n = 0,1,2,...) such that
T, € o + Kn(A, 7o), where K,(A4,70) = span{ry, Ary,..., A" Iry} is the nth Krylov
subspace generated by the matrix A from the residual 7o = b — Az, that corresponds
to the initial guess zg. Many approaches for defining such approximations z, have
been proposed, see, e.g., the books by Greenbaum [25], Meurant [43], and Saad [52].
In particular, due to their smooth convergence behavior, minimum residual methods
satisfying

(19) Irall =, min o~ 4dll,  r.=b-Aa,

are widely used, e.g., the GMRES algorithm of Saad and Schultz [53]. In [11, 26, 48]
it was shown that this “classical” version of the GMRES method is backward stable
provided that the Arnoldi process is implemented using the modified Gram-Schmidt
algorithm or Householder reflections.

Here we deal with a different approach proposed by Walker and Zhou [65], who called
it the Simpler GMRES method. The minimum residual property (19) is equivalent to
the orthogonality condition

Tn L A’Cn(A, 7‘0),

where | is the orthogonality relation induced by the standard Euclidean inner product
(-,+). We propose a generalization of the Simpler GMRES method that makes use of any
nested sequence of matrices Z, ;1 = [z1,...,2,_1] such that the columns of [g;, Z, 1]
form a basis of K,(A,79). We may assume that the columns z; of Z,_; have unit
length and need not be mutually orthogonal. The orthonormal basis V,, of AK, (A4, 7o)
is obtained from the QR factorization of the image of [¢1, Z,,1]:

(20) A[ql,Zn,]_] = VnUn.
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Since 7, € ro + AK,(A,79) = 190 + R(V},) and 7, L R(V,), we can obtain the residual
from 7, = (I — V,V,F)ro. To compute it we apply the modified Gram-Schmidt method,
which leads to the recursion

(21) Tpn = Tn_ 1 — QpUp, on = (Tn—1,Un)-

Since the columns of [g;, Z,, 1] are a basis of C,,(A4, ), we can represent z,, in the form
(22) Tn =To +[q1, Zn-1]tn.

Due to the minimum residual property, we have r, L R(V,,), and thus simply

(23) Upt, = Vfro =lay,... ,an]T.

Hence, once the residual norm is small enough, we can solve this triangular system and
compute z, = g + [g1, Zn—1]tn. We call this general approach the simpler approach.
It includes, as a special case, Simpler GMRES, where Z, 1 = V,,_1. We will also be

interested in the case of the residual basis [q1, Zn_1] = [12%7 ...,H::—ln], which we will

l[roll?
call SGMRES/RB, where “RB” refers to “residual basis”.
Recursion (21) reveals the connection between the simpler approach and yet another
minimum residual approach. Let us set p, = A7 'v,, P, = [p1,...,Pn]. Then, left-
multiplying (21) by A~! yields

(24) Tn = Tp—1 + QnPn,
Now, note that left-multiplying (20) by A~ ! yields
(25) [Qh Zn—l] = PnUn

If U, is known from (20), a recursion for p, can be extracted from this formula. We
will use here the terminology update approach for this case and, more exactly, refined
ORTHODIR for the particular case with Z,_; = V,,_1, since it is a refined version of
the residual norm minimizing ORTHODIR algorithm [14, 70]. Likewise the case with
Dp 1= [H:—i\l’ e, ”::—j”], which can be viewed as a refined version of the ORTHOMIN
algorithm [64, 70] (or the GCR method of Elman [13, 12]) and is identical to the
GMRESR method without preconditioning.

2.1. The maximum attainable accuracy. We analyze the numerical stability of
the simpler and update approaches, and assume that only the computations performed
in (20), (23) and (25) are affected by rounding errors and that the computed Q-factor
in the QR factorization (20) is close to an orthonormal matrix and has beed computed
in a backward stable way. Hence we assume that the computed (orthogonal) factor V,
and the upper triangular factor U, in the QR factorization (20) satisfy

(26) Algr, Zna] = VoUn + Fny, || Fall < cullAlllllgr, Zn-1]ll,

and ||V, — V|| < cu, where V,, is the nearest orthonormal matrix satisfying V2 V;, = I.
For simplicity, we do not distinguish between V,, and V,, and assume that V,, is exactly
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orthonormal. In the simpler approach, we have from [66, 32] for the computed solution
t, of (23) that

(27) (U, + AU,)t, = Dpe, |AU,| < cu|Uy|,

where the absolute value and the inequality are understood component-wise. The ap-
proximation &, to z is then computed as

(28) jn =T+ [fh, Zn—l]fn-

In accordance with (26) we assume in the update approach that in finite precision
arithmetic the computed direction vectors satisfy

(29) [91, Zn1] = PoUn + Gn,  [|Gall < cul|Poll[|Un]l.
As in (24) we compute then the approximate solution &, as
(30) Tn =Tn_1+ QnPn-

The crucial quantity for the analysis of the maximum attainable accuracy is the gap
between the true residual b — AZ, of the computed approximation and the updated
residual 7, obtained from the update formula (21) describing the projection of the pre-
vious residual; see [25, 29]. In fact, once the true residual becomes negligible compared
to the true one, the gap equals the true residual divided by ||A||||£,||, which therefore
can be thought of as the backward error of the ultimate approximate solution &,,. In the
simpler approach, the gap between the true residual b — A%, and the updated residual
T, satisfies

b — A%y, — 70|

1Al 2]

while in the update approach, we have

16— Ay, — 7| [[zoll
Al S cwsne 2o (1452,
provided that 1 — cuk(A4)k([q1, Zn-1]) > 0. The bound on the ultimate backward error
for the update approach is worse that the one for the simpler approach. We see that for
the simpler approach the normwise backward error is on the order of the roundoff unit,
whereas for the update approach we have an upper bound proportional to the condition
number of A. Such a difference is hard to be seen in practice, but a model example can
be constructed, where this difference is clearly visible.

< cuk([q1, Zn-1]) (1 + %) )

In contrast to the difference in the attainable accuracy measured by the backward errors,
it appears that the update approach leads to an approximate solution on essentially the
same accuracy level in the error as the simpler approach, as indicated by the estimate

[Zn] + [0l

llzn = 4]l < cur(A)k([g1, Zn-1]) IE]

which holds for both approaches. A similar phenomenon was also observed by Sleijpen,
van der Vorst and Modersitzki [55] in the symmetric case for GMRES and MINRES.
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2.2. Choice of the basis. First, we choose Z,, ; = V,,_1, which leads to the Sim-
pler GMRES method of Walker and Zhou [65] and to the refined version of ORTHODIR
by Young and Jea [70], respectively. Hence, we choose {g1,v1,...,V,_1} as a basis of
Kn(A, o). If 7o & AK,(A,70), these vectors are linearly independent and hence form a
basis. Note that if 7o € AK,(A4,7o), then the condition (19) yields z, = A~ b, 7, = 0,
and any implementation of the minimum residual method will terminate. As observed
by Liesen, Rozloznik and Strako§ [39], this choice of the basis is not very suitable from
the numerical stability point of view. This shortcoming is reflected by the unbounded
growth of the condition number of [g;, V,,_1]| expressed by the two-sided inequalities

||7”0|| ||7”0||
k(lq1, Va_1]) <2 .
o)) S olan Vel < 20770

The conditioning of [g;, V,,—1] is thus related to the convergence of the method; in par-

ticular, it is inversely proportional to the actual relative norm of the residual. Hence, if
the residual is small enough, Simpler GMRES and refined ORTHODIR behave unstably.

Second, we choose Z,_; = [”:—1”, ey H:Z—j\l]’ which leads to SGMRES/RB (which we
propose as a more stable counterpart of Simpler GMRES) and to the refined version
of ORTHOMIN by Vinsome [64] known also under the name GCR [13, 12]. We have
[91, Zn_1] = R.B,*', where B, = diag(||roll,---,||rn_1]|), i-6., we choose scaled resid-
uals 7g,...,7,_1 as the basis of K, (A,7y). The linear independence of the residual is
guaranteed by the strictly monotonous convergence of their 2-norms and the condition
that the exact solution was not reached yet, i.e., 7¢ ¢ AK,(4,79). Moreover, when
the minimum residual method does not stagnate, the residuals form a well-conditioned

basis, as indicated by the estimate

n—1

_ ri—1]12 + [I7gl?
1< k(RnB;1) < v/myn, = 1+§:” :
< K(RaBy7) < vRm T \l =t re—all? = llrel|?

We define the quantity <, as the stagnation factor. The conditioning of R,B,! is
thus related to the convergence of the method, but in contrast to the conditioning of
[g1, V1], it is related to the intermediate decrease of the residual norms, not to the
residual decrease with respect to the initial residual.
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Conclusions and open questions

In this thesis we studied the numerical behavior of several iterative methods for the
solution of systems of linear algebraic equations. In the first part we looked at the
numerical behavior of certain inexact saddle point solvers. In particular, for several
mathematically equivalent implementations, we studied the influence of inexact solution
of inner systems and estimate their maximum attainable accuracy. When considering
the outer iteration process, our analysis lead to results similar to ones which can be
obtained assuming exact arithmetic. The situation was different, when we looked at
the residuals in the saddle point system. We showed that some implementations lead
ultimately to residuals on the level of roundoff unit independently on the fact that the
inner systems were solved inexactly. Indeed, our results confirm that the generic and
actually the cheapest implementations deliver the approximate solutions, which satisfy
either the second or the first block equation to the working accuracy. In addition, the
implementations with corrected direct substitution are also very attractive. We gave
a theoretical explanation for the behavior which was probably observed or is already
tacitly known. The implementations that we point out as optimal are actually those,
which are widely used and suggested in applications. It appears that, when measured in
terms of the errors, the maximum attainable accuracy level is similar for all considered
implementations and it is proportional to the backward error tolerance of inner systems.

In the second part we studied the numerical behavior of several minimum residual meth-
ods mathematically equivalent to GMRES. T'wo general formulations were analyzed: the
simpler approach that does not require an upper Hessenberg factorization and the update
approach which is based on generating a sequence of appropriately computed direction
vectors. It was shown that for the simpler approach our analysis leads to an upper
bound for the backward error proportional to the roundoff unit, whereas for the update
approach the same quantity can be bounded by a term proportional to the condition
number of A. Although our analysis suggests that there maybe a difference between
both approaches up to the order of k(A), in practice they behave very similarly and it
is very difficult to find an example with a significant difference in the limiting accuracy.
Moreover, when looking at the errors, we note that both approaches lead essentially to
the same accuracy of the computed approximate solutions.

We indicated that the choice of the basis [g;, Z, 1] is the most important issue for the
stability of the considered schemes. Our analysis supports the well-known fact that, even
when implemented with the best possible orthogonalization techniques, Simpler GMRES
and ORTHODIR are inherently less stable due to the choice [g1,Z, 1] = [q1, Vn_ 1]

19
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The situation becomes significantly better, when we use the residual basis (g1, Z, 1] =
[H:—g”, e, H::—j\l] This choice leads to the popular GCR, ORTHOMIN and GMRESR
methods, which are widely used in applications. Assuming some reasonable residual
decrease (which happens almost always in finite precision arithmetic), we showed that
this scheme is quite efficient and proposed a conditionally backward stable variant (called
SGMRES/RB here). Our theoretical results in a sense justify the use of the GCR method

in practical computations.

There are several open problems connected to the topic of this thesis.

Various stopping criteria for inner systems. The analysis of segregated saddle
point solvers is based on the backward error stopping criterion in inner systems. It could
be interesting to compare other stopping criteria based, e.g., on the relative residuals
or estimates of energy errors in the Schur complement method. The relation between
the A-norm of z — z and the BT A~! B-norm of y — 4 can lead to a stopping criterion
based on the energy norm of z — z;. However, it is not completely clear how to do this,
when the systems with A are not solved exactly.

Corrected substitution in stationary iterative methods. We saw that for the
Schur complement reduction and null-space projection methods, it is more preferable to
update the approximation z; using the corrected direct substitution than to compute
it directly. Analogous results hold also for stationary iterative methods. Consider the
system Az = b with a nonsingular matrix A and its splitting A = M — N, where M
is also nonsingular. A stationary iterative method then generates the approximations
to z satisfying Mzy,1 = Nzx + b starting from some zy. Higham and Knight [33]
analyzed this implementation in finite precision arithmetic, and they showed that the
limiting accuracy depends on the maximum relative norm of the approximate solutions
Z, (¢ = 0,...,k). However, it is much more beneficial, in such a case, rather than
compute zp 1 = M~Y(Nzy + b), to use the “corrected” formula zx,1 = T + M1y,
where 7, = b — Azg. The final level of the residual f — AZp — BYg in the Schur
complement reduction method with the corrected direct substitution does not depend
on the maximum norm of the iterates during the whole iteration process but only on
those in a few last iterations. The similar observation can be made also in the case
of the “corrected” implementation of the stationary iteration, and the idea can be also
extended to two-stage iterative methods, e.g., when applying the SIMPLE method for
the solution of fluid flow problems (see, e.g., [50]).

Backward error analysis of segregated methods. At the end of the first part
of the thesis, we interpret the inexact solution computed with the Schur complement
reduction method (using the generic update) as an exact solution of the saddle point
problem with a perturbed upper-left matrix block. The similar backward error analysis
should be performed also for other implementations of the Schur complement reduction
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method and for the null-space projection method. Moreover, the analysis of the null-
space projection should consider also a particular projection method for computing the
direction vectors.

Preconditioned residual basis. In the analysis of the minimal residual Krylov
subspace methods, we did not consider the issue of preconditioning or, we assume, that
the system Az = b is already preconditioned. It does not make much sense to precon-
dition the methods using the basis [g1, V1] such as Simpler GMRES or ORTHODIR
due to their inherent instability. One can restart the method to overcome this problem,
but note that the restart is necessary when the method becomes unstable, i.e., when
it converges fast! It seems reasonable to use (fixed or flexible) preconditioning in the
case of the residual basis (the preconditioned SGMRES/RB and GCR). It is sometimes
observed that the preconditioned residual basis of GCR (i.e., GMRESR [63]) is more
preferable than, e.g., preconditioned GMRES (with a fixed preconditioner) or flexible
GMRES [51], which use the preconditioned orthonormal basis of KC,,(A, ry). Moreover,
faster convergence could be observed when using preconditioned residuals. This issue
needs to be analyzed further.
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