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AbstraktJak je zn�amo, zaokrouhlova�� hyby a nep�resn�e �re�sen�� vnit�rn��h �uloh maj�� vliv nanumerik�e hov�an�� itera�n��h metod; oben�e sni�zuj�� jejih ryhlost konvergenea ovliv�nuj�� kone�nou p�resnost spo�ten�eho �re�sen��. V pr�ai se zab�yv�ame anal�yzoumaxim�aln�� dosa�ziteln�e p�resnosti n�ekter�yh itera�n��h metod pro �re�sen�� soustavline�arn��h algebraik�yh rovni.Dizertae je rozd�elena na dv�e ��asti. Prvn�� z nih obsahuje anal�yzu limitn�� p�res-nosti metod krylovovsk�yh podprostor�u pro �re�sen�� rozs�ahl�yh �uloh sedlov�yhbod�u. Uva�zujeme dva typy segregovan�yh metod: metodu reduke na Shur�uvdopln�ek a metodu projeke na nulov�y prostor mimodiagon�aln��ho bloku. Ukazujese, �ze v�yb�er vzore pro zp�etnou substitui m�a vliv na maxim�aln�� dosa�zitelnoup�resnost p�ribli�zn�eho �re�sen�� spo�ten�eho v aritmetie s kone�nou p�resnost��.Druh�a ��ast obsahuje anal�yzu numerik�eho hov�an�� n�ekter�yh metod minim�aln��hrezidu��, kter�e jsou matematiky ekvivalentn�� metod�e zoben�en�yh minim�aln��hrezidu�� GMRES. Srovn�av�ame dva hlavn�� postupy: jeden, kde p�ribli�zn�e �re�sen�� jevypo�teno ze soustav s horn�� troj�uheln��kovou mati��, a jeden, kde je p�ribli�zn�e�re�sen�� upravov�ano pomo�� jednoduh�eho rekurentn��ho vzore. Ukazuje se, �zev�yb�er b�aze m�a vliv na numerik�e hov�an�� v�ysledn�e implementae. Zat��mo me-tody Simpler GMRES a ORTHODIR jsou m�en�e stabiln�� d��ky �spatn�e podm��n�e-nosti zvolen�e b�aze, b�aze zkonstruovan�a z rezidu�� m�u�ze b�yt dob�re podm��n�en�a,jestli�ze jsou normy rezidu�� dostate�n�e klesaj����. Tyto v�ysledky vedou k nov�e im-plementai, kter�a je podm��n�en�e zp�etn�e stabiln��, a v jist�em smyslu i vysv�etluj��experiment�aln�e ov�e�ren�y fakt, �ze metoda GCR (ORTHOMIN) d�av�a v praktik�yhaplika��h velmi p�resn�e aproximae �re�sen��.Kl���ov�a slova. Rozs�ahl�e line�arn�� soustavy, metody krylovovsk�yh podprostor�u,�ulohy sedlov�eho bodu, metoda reduke na Shur�uv dopln�ek, metoda projeke nanulov�y prostor mimodiagon�aln��ho bloku, metody minim�aln��h rezidu��, numerik�astabilita, anal�yza zaokrouhlova��h hyb.
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AbstratIt is known that inexat solutions of inner systems and rounding errors a�etthe numerial behavior of iterative methods. In partiular, they slow down theironvergene rate and have an e�et on the ultimate auray of the omputedsolution. Here we fous on the analysis of the maximum attainable auray ofseveral iterative methods for solving systems of linear algebrai equations.The thesis is divided into two parts. The �rst part is devoted to the analy-sis of Krylov subspae solvers applied to the large-sale saddle point problems.Two main representatives of segregated solution approahes are analyzed: theShur omplement redution method and the null-spae projetion method. Weshow that the hoie of the bak-substitution formula an onsiderably in�uenethe maximum attainable auray of approximate solutions omputed in �nitepreision arithmeti.In the seond part we analyze numerial behavior of several minimum residualmethods, whih are mathematially equivalent to the GMRES method. Twomain approahes are ompared: the approah, whih omputes the approximatesolution from an upper triangular system, and the approah where the approx-imate solutions are updated with a simple reursion formula. We show that adi�erent hoie of the basis an signi�antly in�uene the numerial behaviorof resulting implementation. While Simpler GMRES and ORTHODIR are lessstable due to ill-onditioning of hosen basis, the residual basis remains well-onditioned when we have a reasonable residual norm derease. These resultslead to a new implementation, whih is onditionally bakward stable, and ina sense explain an experimentally observed fat that the GCR (ORTHOMIN)method delivers in pratial omputations very aurate approximate solutionswhen it onverges fast enough without stagnation.Key words. large-sale linear systems, Krylov subspae methods, saddle pointproblems, Shur omplement redution, null-spae projetion method, minimumresidual methods, numerial stability, rounding error analysis.
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ÀííîòàöèÿÈçâåñòíî, ÷òî íåàêêóðàòíûå ðåøåíèÿ âíóòðåííèõ ïðîáëåì è îøèáêè îêðóãëåíèÿîòðàæàþòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèþ èòåðàöèîííûõ ìåòîäîâ. Îíè êîíêðåò-íî çàòîðìîçÿò èõ ñêîðîñòü ñõîäèìîñòè è îêàçûâàþò âëèÿíèå íà �èíàëüíóþ àê-êóðàòíîñòü âû÷èñëåííîãî ðåøåíèÿ. Ìû çäåñü çàíèìàåìñÿ àíàëèçîì ìàêñèìàëüíîéäîñòèæèìîé àêêóðàòíîñòè íåêîòîðûõ èòåðàöèîííûõ ìåòîäîâ äëÿ ðåøåíèÿ ñèñòåìëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé.Ýòà äèññåðòàöèÿ ðàçäåëåíà íà äâå ÷àñòè. Ïåðâàÿ çàíèìàåòñÿ àíàëèçîì ëèìèòíîéàêêóðàòíîñòè ìåòîäîâ ïðîñòðàíñòâ Êðûëîâà äëÿ ðåøåíèÿ áîëüøèõ ñèñòåì ñåäåëü-íûõ òî÷åê. Ìû ðàññìàòðèâàåì äâà òèïû ñåãðåãàöèîííûõ ìåòîäîâ: ìåòîäîì ïðåîá-ðàçîâàíèÿ íà äîïîëíåíèå Øóðà è ìåòîäîì ïðîåêöèè íà ÿäðî ìèìîäèàãîíàëüíîãîáëîêà. Ìû óêàçûâàåì, ÷òî âûáîð �îðìóëû îáðàòíîé ïîäñòàíîâêè îòðàæàåòñÿ íàìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè ïðèáëèçèòåëüíîãî ðåøåíèÿ âû÷èñëåííî-ãî â àðè�ìåòèêå ñ êîíå÷íîé òî÷íîñòüþ.Âòîðàÿ ÷àñòü ñîäåðæèò àíàëèç âû÷èñëèòåëüíîãî ïîâåäåíèÿ íåñêîëüêèõ ìåòîäîâ ìè-íèìàëüíûõ íåâÿçîê, êîòîðûå ìàòåìàòè÷åñêè ýêâèâàëåíòíûå ìåòîäó ¾GMRES¿. Ìûñðàâíèâàåì äâà ãëàâíûå ìåòîäû: îäèí, êîòîðûé îïðåäåëÿåò ïðèáëèæ¼ííîå ðåøåíèåèç ñèñòåìû ñ âåðõíåé òðåóãîëüíîé ìàòðèöîé, è îäèí, ãäå ïðèáëèæ¼ííîå ðåøåíèåêîððåêòèðîâàííîå ñ ïîìîùüþ ïðîñòîé ðåêóððåíòíîé �îðìóëû. Ìû óêàçûâàåì, ÷òîâûáîð áàçû îòðàæàåòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèè êîíå÷íîãî ìåòîäà. Ïîêà ìå-òîäû ¾Simpler GMRES¿ è ¾ORTHODIR¿ ìåíåå ñòàáèëüíûå çà ñ÷åò ïëîõî îáóñëîâ-ëåííîé áàçû, áàçà íåâÿçîê ìîæåò áûòü õîðîøî îáóñëîâëåííàÿ, åñëè íîðìû íåâÿçîêäîñòàòî÷íî ñíèæàþòñÿ. Ýòè ðåçóëüòàòû âåäóò ê íîâîìó ìåòîäó, êîòîðûé óñëîâíîîáðàòíî ñòàáèëüíûé, è â îïðåäåëåííîì ñìûñëå îáúÿñíÿþò ýêñïåðèìåíòàëüíî óäî-ñòîâåðåííûé �àêò, ÷òî ìåòîä ¾GCR¿ (òàêæå èçâåñòíûé êàê ¾ORTHOMIN¿) äà¼òâ ïðàêòè÷åñêèõ àïïëèêàöèÿõ î÷åíü àêêóðàòíûå àïïðîêñèìàöèè ðåøåíèÿ.Êëþ÷åâûå ñëîâà. áîëüøèå ëèíåéíûå óðàâíåíèÿ, ìåòîäû ïðîñòðàíñòâ Êðûëîâà,ìåòîä ïðåîáðàçîâàíèÿ íà äîïîëíåíèå Øóðà, ìåòîä ïðîåêöèè íà ÿäðî ìèìîäèàãî-íàëüíîãî áëîêà, ìåòîäû ìèíèìàëüíûõ íåâÿçîê, âû÷èñëèòåëüíàÿ ñòàáèëüíîñòü, àíà-ëèç îøèáîê îêðóãëåíèÿ.
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CHAPTER 1
IntroductionConsider a system of linear algebrai equations in the form(1) Ax = b;where A is an N � N nonsingular matrix and b is a right-hand side vetor. Usuallywe assume that A is large and sparse as it is, e.g., when A is a disrete representationof some partial di�erential operator. We are looking for the solution of (1) or for itssuÆiently aurate approximation.The methods for solving (1) are usually lassi�ed as diret and iterative. Diret methodsare mostly based on the suessive elimination of unknowns. They fatorize the systemmatrix (with suitably ordered rows or olumns), e.g., into the produt of lower and uppertriangular matries as in the Gaussian elimination, or to the produt of an orthogonaland a triangular matrix as in the QR fatorization. The solution of (1) an be thenfound by solving systems with these fators. In general, diret methods are well suitedfor dense and moderately large systems. However, when solving a large sparse system,the number of newly reated non-zero elements in both fators an heavily a�et theomputational time and storage requirements. In addition, even though diret methodsdeliver in theory the exat solution, there is no need for suh an auray in pratiedue to unertain data or disretization errors.Therefore, iterative methods beame very popular when solving sparse systems. Aniterative method for the solution of (1) generates a sequene of approximations xk sothat they ideally onverge to the exat solution. The system matrix need not to be ex-pliitly stored. In eah iteration we need only to perform a matrix-vetor multipliation.Moreover, the approximations onverge often monotonously (or almost monotonously)in some �xed norm and so we an stop the iteration proess when the approximationis aurate enough. However, the onvergene rate of iterative methods an be slow ingeneral (depending on properties of the system) and thus hybrid tehniques ombiningthe iterative and diret approah, suh as preonditioned iterations, are widely used tomake the proess more eÆient.In general, a solution method (no matter if a diret or iterative one) an be interpretedas a solution of a sequene of subproblems whih are simpler to solve. In diret methodswe an identify following subproblems: the fatorization of the system matrix and thesolution of systems with omputed fators. In eah step of an iterative method, wemultiply a vetor by the system matrix and optionally solve the system with a preondi-tioner whih an be also regarded as the subproblems solved repeatedly in the iteration1



2 CHAPTER 1. INTRODUCTIONloop. E.g., the matrix-vetor multipliation an involve the solution of an inner systemas in the Shur omplement redution method whih we will disuss later.
1. The state of the artFrom now on we restrit ourselves to iterative methods. In pratie, the omputationsare a�eted by errors. They are never performed exatly due to rounding errors andsome of them are done inexatly with a presribed level of auray, espeially whenomputations with the working auray ould be a waste of time and resoures. E.g.,matrix-vetor produts may involve a solution of inner systems, whih (being large andsparse) an be solved inexatly with another iterative method. Preonditioning anbe also applied through some iterative proess. Usually, a method is alled inexatif some involved subproblems are solved only approximately even though we assumeexat arithmeti. Rounding errors an also onsiderably a�et the behavior of iterativemethods. Sine the behavior of inexat iterative methods and \exat" methods in �nitepreision arithmeti is similar, we will not stritly distinguish between the soures oferrors and we will treat them ommonly in a uni�ed approah in the following disussion.When an inexatness is taken into aount, there are several important questions whihneed to be answered. In the following we give a brief overview of the state of art inthis �eld (inluding results in �nite preision arithmeti). Generally the inexatnessintrodued in an iterative method has two main e�ets:� The errors aused by inexat omputations are propagated throughout theiterative proess. Ideally the error propagation should be restrained so that theloal errors are not magni�ed. There is a limit in the auray whih annotbe exeeded and it is usually alled the maximum attainable (or limiting)auray.� The onvergene of an inexat iterative method an be delayed with respetto the onvergene of the same method, where all omputations are performedexatly. We may ask how many additional iterations should be performed suhthat the same auray is attained as in the ideal (exat) ase.In this thesis we fous on the limiting auray of inexat iterative methods. Thee�ets of inexat matrix-vetor multipliations in iterative methods (also referred asrelaxed methods) on the maximum attainable auray were studied simultaneouslyby van den Eshof and Sleijpen [59℄, and by Simonini and Szyld [54℄. Their analysisexplains the experimental results of Bourass and Frayss�e [7℄ (the report with an extensiveexperimental basis was published in 2000) who proposed a relaxation strategy for theauray of the omputed matrix-vetor produt. They have shown that to ahieve thepresribed auray of the omputed solution we need to ompute the matrix-vetorprodut with the auray (measured by the bakward error) inversely proportionalto the atual residual norm. The papers [59, 54℄ provide the theoretial support forthis strategy further developed in [60℄. This topi is losely related to the exiblepreonditioning, see, e.g., [4, 21, 46, 54, 18℄. Here we try to adopt the bakward error



1. THE STATE OF THE ART 3analysis, widely used in the study of rounding errors, and we analyze the e�ets of inexatomputations on the limiting auray of ertain iterative methods. The omputationsare performed in the presene of rounding errors while solutions to ertain subproblemsare done with more relaxed auray. We want to know how the inexatness of theseinner systems together with the errors aused by roundo� a�et the behavior of theonsidered algorithms. It appears that some measures of the auray are ultimately onthe level proportional to the unit roundo�, while other measures depend on the aurayof inner systems.The problem of numerial stability of lassial iterative methods was addressed in severalpapers. The �rst analyzes arried out by Golub [19℄ and Lynn [42℄ provide statistial andnon-statistial results for the seond order Rihardson and SOR method. The statistialerror analysis of lassial iterative methods was also performed by Arioli and Romani[2℄ larifying the relation between the onditioning of the preonditioned system matrixand the onvergene rate of the iterative method. In [33℄ Higham and Knight give theforward and bakward error analysis of a general one-step stationary method. Theiranalysis among other things shows that the auray of the omputed solution stronglydepends on the osillations of norms of the iterates whih is a ommon observation notonly in the ase of lassial iterative methods. Moreover, even though the onvergeneis driven by the spetral radius of the iteration matrix, the limiting auray dependsrather on the norm of its powers whih an be arbitrarily large in the early stage ofthe iterative proess. This was observed by Hammarling and Wilkinson [30℄. Thestability of lassial iterative methods was also analyzed by Wo�zniakovski in [67, 68℄.He proved the forward stability of lassial methods like Jaobi, Rihardson, Gauss-Seidel and SOR (for symmetri systems with the Property A) and Chebyshev method(for symmetri positive de�nite systems). However, the Chebyshev method appeared tobe not normwise bakward stable. In [20℄ Golub and Overton disuss the onvergenerate of the seond order Rihardson and Chebyshev method. They onsider the inexatsolution of inner systems with uniformly bounded relative residuals. The auray ofthe omputed solution in the Chebyshev method is further analyzed by Giladi, Goluband Keller [17℄ who show the optimality of the uniform tolerane used in [20℄. Whenthe system is solved by the lassial iterative method in eah step we must solve asimpler system indued by the splitting of the system matrix. However, these systemsan be also solved iteratively. These methods, referred to as two-stage methods, wereaddressed, e.g., in [44, 37, 16℄.One of the most important result in the study of Krylov subspae methods is due to Paige[47℄. He provides the analysis of the behavior of the symmetri Lanzos algorithm [38℄in the presene of rounding errors. This algorithm is losely related to the onjugategradient method by Hestenes and Stiefel [31℄. It was �rst studied by Wo�zniakowski[69℄ and Bollen [6℄. Wo�zniakowski shows that this method onverges in �nite preisionarithmeti at least linearly with the onvergene rate similar to the steepest desentmethod. However, his analysis does not reet the reality very well, sine the onvergeneof the onjugate gradient method annot be haraterized loally but its atual behaviordepends on the whole iteration proess; see, e.g., [61, 41℄ and the referenes therein. The



4 CHAPTER 1. INTRODUCTIONnew insight into this problem was brought by Greenbaum [23℄ and further developedtogether with Strako�s [58, 27℄. It appears that the �nite preision Lanzos proess aswell as the �nite preision onjugate gradient method behave as their exat ounterpartsapplied to the matrix of (possibly muh) larger dimension with the eigenvalues lusterednear the eigenvalues of the original matrix. This issue was further disussed by Notayin [45℄.The analysis of limiting auray of some lasses of iterative methods an be performed inrather general setting without referring to any partiular method. The methods based onthe oupled two-term reurrenes were analyzed by Greenbaum in [24, 25℄. The papersfous mainly on the onjugate gradient method but the analysis holds for a larger setof methods. In partiular, the results of Greenbaum show that the highly irregularonvergene behavior (expressed by the osillations of norms of iterates) observed inthe ase of non-optimal iterative methods (suh as BiCG [15℄ or CGS [56℄) an havean unfavorable e�et on the limiting auray of the omputed solution. A similarphenomenon is mentioned also by van der Vorst in [62℄, where the loss of auray isexplained by osillations of residual norms. On the other hand, suh osilations do notour (or an be a priori bounded) in the ase of optimal methods suh as onjugategradients and onjugate residuals [57℄ applied to symmetri positive de�nite problems,or in the ase of residual minimizing methods (Orthodir [70℄, Orthomin [64℄, GCR[12℄) for general nonsymmetri systems. The numerial stability of various (equivalent)methods using short reurrenes was further studied by Gutkneht and Strako�s in [29℄and by Sleijpen, van der Vorst and Modersitzki in [55℄. In [28℄ Gutkneht and Rozlo�zn��kdisuss the e�et of residual smoothing on the limiting auray.Finally we survey the results for the �nite preision behavior of nonsymmetri Krylovsubspae methods with the full-term reurrenes suh as GMRES [53℄. The House-holder implementation of the underlying Arnoldi proess [3℄ is quite straightforward toanalyze, see the paper by Drko�sov�a, Greenbaum, Rozlo�zn��k and Strako�s [11℄, and byArioli and Fassino [1℄. This is due to the almost exat orthogonality of the omputedKrylov subspae basis. However, when we use the heaper modi�ed Gram-Shmidt im-plementation, the orthogonality is gradually lost during the iteration proess. The lossof orthogonality however goes hand in hand with the derease of the bakward error ofthe atual omputed solution as observed by Greenbaum, Rozlo�zn��k and Strako�s in [26℄and further analyzed by Paige, Rozlo�zn��k and Strako�s in [49, 48℄. For more details see[40℄ and the referenes therein.
2. Organization of the thesisThis thesis is divided into two main parts and is organized as follows. Chapter 3, whihis based on the papers [35, 34℄, is devoted to the analysis of inexat methods for solvingsaddle point problems of the form A BBT 0! xy! =  f0! :



2. ORGANIZATION OF THE THESIS 5A brief overview on saddle point problems is presented in Chapter 2. We analyzetwo segregated methods based on the transformation of the whole inde�nite prob-lem to a redued system with more preferable properties (smaller dimension, positive(semi)de�niteness). The redued system is solved by a suitable iterative method givingthe approximations to one of the blok omponents of the solution vetor (x or y). Theremaining omponent is omputed via some bak-substitution formula. We onsiderthree di�erent but mathematially equivalent formulas. In eah iteration we have tosolve either a nonsingular system with A, or a full rank least squares problem with B.Sine suh systems are not usually solved exatly, we assume here that they are solvedwith a presribed bakward error and study the e�et on the maximum attainable au-ray of the solution method together with the e�ets of rounding errors. Suh inexatmethods have been also onsidered in many papers but most of them analyzed the delayof onvergene; see the referenes in Chapter 3. Here we provide a qualitative analysis ofthe maximum attainable auray of the omputed solution measured by true residualsin the saddle point system, by true residuals in redued systems and by forward errors ofthe omputed solutions. In addition, we show whih residuals (and how) an be a�etedby the possibly irregular onvergene behavior in the ase of the nonsymmetri blok A.The theoretial results are illustrated on numerial experiments.Chapter 4, based on the paper [36℄, is devoted to the analysis of several residual mini-mizing Krylov subspae methods, whih are mathematially equivalent to the GMRESmethod [53℄. In ontrast to GMRES, they, in the nth iteration, build an orthonormalbasis of AKn(A; r0) instead of Kn(A; r0): Kn(A; r0) denotes the nth Krylov subspaegenerated by the matrix A and the vetor r0. Two approahes are ompared: the ap-proah, whih omputes the approximate solution from an upper triangular system,and the approah, where the approximate solutions are updated step by step with asimple reursion formula. We onsider a general basis to generate the orthonormal ba-sis of AKn(A; r0), and it appears that, while Simpler GMRES and ORTHODIR areless stable due to ill-onditioning of the hosen basis, the residual basis an be well-onditioned, when we have a reasonable residual norm derease. These results lead toa new implementation, whih is onditionally bakward stable, and to the well knownGCR (ORTHOMIN) method, and in a sense explain an experimentally observed fatthat GCR (ORTHOMIN) delivers very aurate approximate approximate solutions inpratial appliations. The theoretial results are illustrated on numerial experiments.In Chapter 5 we give onlusions and diretions of the future work.



6 CHAPTER 1. INTRODUCTION
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CHAPTER 2
Main results of the thesis

1. Limiting accuracy of segregated saddle point solversIn this setion we summarize the results of the �rst part of the thesis. Consider thesolution of a saddle point system in the blok form(2)  A BBT 0! xy! =  f0! ;where the diagonal blok A 2 R
n�n is symmetri positive de�nite, and the o�-diagonalblok B 2 R

n�m has the full olumn rank. The solution vetor and the right-hand sidevetor are partitioned onsistently with respet to the partitioning of the system ma-trix. Saddle point problems have reently attrated a lot of attention and appear to bea time-ritial omponent in the solution of large-sale problems in many appliations ofomputational siene and engineering. A large amount of work has been devoted to awide seletion of solution tehniques varying from the fully diret approah, through theuse of iterative stationary or Krylov subspae methods up to the ombination of diretand iterative tehniques inluding preonditioned iterative shemes. For the exellentsurvey on appliations, methods and results on numerial solution of saddle point prob-lems we refer to [5℄ and numerous referenes therein. Signi�antly less attention howeverhas been paid so far to the numerial stability aspets. We onentrate on the numerialbehavior of shemes whih ompute separately the unknown vetors x and y: one ofthem is �rst obtained from a redued system of a smaller dimension and one it hasbeen omputed, the other unknown is obtained by the bak-substitution solving exatlyor inexatly another redued problem. The main representatives of suh a segregatedapproah are the Shur omplement redution method and the null-spae projetionmethod. Here we analyze suh algorithms whih an be interpreted as iterations forthe redued system but ompute the approximate solutions xk and yk to both unknownvetors x and y simultaneously.We onentrate on the question what is the best auray we an get from the Shuromplement redution method and the null-spae projetion method when inner sys-tems are solved with a presribed auray in �nite preision arithmeti. The fat thatthe inner solution tolerane strongly inuenes the auray of omputed iterates isknown and was studied in several ontexts. The general framework for understandinginexat Krylov subspae methods has been developed in [54℄ and [59℄. Assuming ex-at arithmeti, the authors of [54℄ and [59℄ investigated the e�et of an approximatelyomputed matrix-vetor produt in every iteration on the ultimate auray of several9



10 CHAPTER 2. MAIN RESULTS OF THE THESISsolvers and explained the suess of relaxation strategies for the inner auray toler-ane from [7, 8, 18℄. The developed theory strongly exploits the partiular propertiesof an iterative method used for solving the assoiated system. In the ontext of saddlepoint problems this requires a deep analysis of the outer iteration sheme for solving theredued Shur omplement or projeted system.The theory developed here for the outer iteration proess is similar to the analysis ofGreenbaum in [25, 24℄ who estimated the gap between the true and reursively updatedresidual for a general lass of iterative methods using oupled two-term reursions. Thedi�erene here is that every omputed approximate solution of inner problem is in-terpreted as an exat solution of a perturbed problem indued by the atual stoppingriterion, while the theory of [25℄ onsidered only the rounding errors assoiated witha �xed matrix-vetor multipliation. In ontrast to the theory of inexat Krylov meth-ods [54, 59℄ the bounds for the true residual in the outer iteration loop are obtainedwithout speifying the solver used for solving the Shur omplement or the projetedHessian system. It appears that the maximum attainable auray level in the outerproess is mainly given by the inexatness of solving the inner problems and it is notfurther magni�ed by the assoiated rounding errors. These results are thus similar toones whih an be obtained in exat arithmeti.The situation is di�erent when looking at the numerial behavior of residuals assoi-ated with the original saddle point system, whih desribe how aurately are the twoblok equations of (2) satis�ed. It is shown that the attainable auray of omputedapproximate solutions then depends signi�antly on the bak-substitution formula usedfor omputing the remaining unknowns. Our results show that independently of thefat that the inner systems are solved inexatly some bak-substitution shemes leadultimately to residuals on the roundo� unit level.
1.1. Schur complement reduction method. The Shur omplement redutionmethod uses the equivalent formulation of (2) in the form A B0 BTA�1B! xy! =  fBTA�1f! ;whih is nothing but a blok Gaussian elimination applied to (2). This blok triangularsystem is solved by omputing the unknown y from the symmetri positive de�niteShur omplement system(3) BTA�1By = BTA�1fand then by omputing the unknown x from a system(4) Ax = f �By:Here we disuss algorithms whih ompute simultaneously approximations yk and xksolving iteratively the Shur omplement system (3) and ideally ful�ll the �rst blokequation of (2), i.e., they satisfy Axk +Byk = f:



1. LIMITING ACCURACY OF SEGREGATED SADDLE POINT SOLVERS 11Without speifying any partiular method, we assume that we have omputed the ap-proximate solution yk+1 and the residual vetor r(y)k+1 using the reursionsyk+1 = yk + �kp(y)k ;(5) r(y)k+1 = r(y)k + �kBTA�1Bp(y)k(6)with r(y)0 = �BTA�1(f �By0). We distinguish between the following three mathemat-ially equivalent bak-substitution formulasxk+1 = xk + �k(�A�1Bp(y)k );(7) xk+1 = A�1(f �Byk+1);(8) xk+1 = xk +A�1(f �Axk �Byk+1):(9)These shemes have been used and studied in the ontext of many appliations, in-luding various lassial Uzawa algorithms, two-level pressure orretion approah orinner-outer iteration method for solving (2). Beause the solves with matrix A in (7)-(9) are expensive, these systems are in pratie solved only approximately. Our analysisis based on the assumption that every solution of a symmetri positive de�nite systemwith the matrix A is replaed by an approximate solution produed by an arbitrarymethod. The resulting vetor is then interpreted as an exat solution of the system withthe same right-hand side vetor but with a perturbed matrix A+�A. We require thatthe relative norm of the perturbation is bounded as k�Ak � �kAk, where � representsa bakward error assoiated with the omputed solution vetor, and we assume thatthe perturbation �A does not exeed the limitation given by the distane of A to thenearest singular matrix and put restrition in the form ��(A)� 1.Using (5) and (6), we an estimate the gap between the true residual in the outeriteration, i.e., the residual in the Shur omplement system (3), and the updated residualr(y)k as k �BTA�1f +BTA�1B�yk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk)where �Yk is de�ned as a maximum norm over all omputed approximate solutions �Yk �maxi=0;:::;k k�yik. While the updated residual �r(y)k onverges to zero, the true residualstagnates at the level proportional to � . On the other hand, the auray measured bythe residuals f �A�xk �B�yk and �BT �xk in (2) depends on the partiular hoie of thebak-substitution formula. No matter how we ompute the approximations �xk and �yk,we have(10) �BTA�1f +BTA�1B�yk = �BT �xk �BTA�1(f �A�xk �B�yk)whih gives the mutual relation between the residual �BTA�1f + BTA�1B�yk in theShur omplement system (3) and the residuals f � A�xk � B�yk and �BT �xk assoiatedwith the saddle point system (2). Sine k �BTA�1f +BTA�1B�ykk is ultimately O(� ),it is lear from (10) that both f �A�xk�B�yk and �BT �xk annot be proportional to theroundo� unit u.



12 CHAPTER 2. MAIN RESULTS OF THE THESISIn the update sheme (7), the true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A)(kfk + kBk�Yk);and the gap between the residuals �BT �xk and �r(y)k an be estimated ask �BT �xk � �r(y)k k � O(u)�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk):Hene this sheme guarantees that the residual �BT �xk will ultimately reah the levelof O(u) independently on the fat that the inner systems are solved with the relaxedauray given by the parameter � .In the diret substitution sheme (8), the true residual f�A�xk�B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A) (kfk + kBkk�ykk);and the gap between the residuals �BT �xk and �r(y)k an be bounded as followsk �BT �xk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk):In this most straightforward sheme, both residuals thus stagnate ultimately on the levelof O(� ).In the orreted diret substitution sheme (9), the true residual f �A�xk�B�yk satis�eskf �A�xk �B�ykk � O(u)�(A)1� ��(A) (kfk + kBk�Y k0k )for all steps k starting from some k0, where �Y k0k � maxi=k0;:::;k k�yik. The gap between�BT �xk and �r(y)k an be estimated as followsk �BT �xk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk):The onvergene of kf � A�xk � B�ykk is driven by the stationary iteration with thenorm of the iteration matrix bounded by O(� )�(A)=(1 � ��(A)) and after some initialstage the residual onverges ultimately to the level of O(u). However, the seond blokequation of (2) is satis�ed to the auray given by � .Independently of the hosen bak-substitution formula, the ultimate levels of error normskx� �xkk and ky � �ykk are O(� ) as indiated by the estimateskx� �xkk � 1kf �A�xk �B�ykk+ 2k �BT �xkk;ky � �ykk � 2kf �A�xk �B�ykk+ 3k �BT �xkk;where 1 � ��1min(A), 2 � ��1min(B) and 3 � ��1min(BTA�1B) are onstants independentof the iteration step k, and depend on the onditioning of the bloks A andB. In pratie,these bloks an be ill-onditioned and in suh ases the onstants 1, 2 and 3 mayplay an important role.



1. LIMITING ACCURACY OF SEGREGATED SADDLE POINT SOLVERS 13
1.2. Null-space projection method. The null-spae projetion method is basedon the projetion of the �rst blok equation in (2) onto the null-spae N(BT ) and ontoits orthogonal omplement, the range R(B). Denoting by � the orthogonal projetoronto R(B), we �rst ompute the unknown x 2 N(BT ) from the projeted system(11) (I ��)A(I ��)x = (I ��)fwith the symmetri positive semi-de�nite matrix (I��)A(I��), and then the unknowny is obtained as y = By(f �Ax) by solving the least squares problemkf �Ax�Byk = minv2Rm kf �Ax�Bvk:We disuss algorithms whih ompute simultaneously approximations xk and yk bysolving iteratively the projeted system (11) and minimize the residual norm f �Axk�Byk, i.e., yk+1 is given by yk+1 = By(f � Axk+1). We assume that the approximatesolution xk+1 and the residual vetor r(x)k+1 are omputed usingxk+1 = xk + �kp(x)k ;(12) r(x)k+1 = r(x)k � �kAp(x)k �Bp(y)k ;(13)where r(x)0 = By(f �Ax0). The vetors x0 and p(x)k belong to N(BT ) and p(y)k solves theproblem Bp(y)k � r(x)k � �kAp(x)k minimizing the residualkr(x)k � �kAp(x)k �Bp(y)k k = minp2Rm kr(x)k � �kAp(x)k �Bpk:This residual update strategy was proposed in [22℄ (see also [10, 9℄) and it is used toredue the roundo� errors in the projetion onto N(BT ). Again we distinguish betweenthree bak-substitution formulasyk+1 = yk + p(y)k ; p(y)k = By(r(x)k � �kAp(x)k );(14) yk+1 = By(f �Axk+1);(15) yk+1 = yk +By(f �Axk+1 �Byk):(16)The pseudoinverse By in (14)-(16) is applied by solving the least squares with the matrixB. These problems are solved inexatly. In our onsiderations we assume that theomputed solution �v of a least squares problem Bv �  is an exat solution of a perturbedproblem (B +�B)�v � +� with k�Bk=kBk � � and k�k=kk � � . The parameter� again represents the measure for inexat solution of the least squares with B andatually it desribes the bakward error. This an be ahieved in many di�erent waysonsidering the inner iteration loop solving the assoiated system of normal equations,the augmented system formulation or solving it diretly. We assume ��(B) � 1 whihguarantees B +�B to have a full olumn rank.



14 CHAPTER 2. MAIN RESULTS OF THE THESISUsing (12) and (13), we an estimate the gap between the true residual in the outeriteration, i.e., in the projeted system (11), and the updated residual �r(x)k ask(I ��)f � (I ��)A(I ��)�xk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk + kAk �Xk):where �Xk � maxi=0;:::;k k�xik. While the updated residual �r(x)k onverges to zero, the trueresidual stagnates at the level proportional to � independently on the bak-substitutionformula. Moreover, we ideally have (B+�B)T x̂ = 0 whih implies k�BT x̂k � �kBkkx̂k.Therefore we an expet that also the residual �BT �xk assoiated with the omputedapproximate solution �xk will be proportional to � . Suh analysis is dependent on thehoie of a partiular method with the reurrenes (12) and (13) and we do not giveit here. In aordane with [25℄ it seems reasonable that the bound for �BT �xk isproportional to the fator �Xk, i.e.,k �BT �xkk � O(� )kBk1� ��(B) �Xk:It is lear that no matter how we ompute �xk and �yk we have the following relationbetween (I ��)f � (I ��)A(I ��)�xk, f �A�xk �B�yk and �BT �xk(17) (I ��)f � (I ��)A(I ��)�xk = (I ��)(f �A�xk �B�yk) + (I ��)A��xk:Owing to our assumption, the norm of �BT �xk is �nally on the level of O(� ). We havethat k(I � �)f � (I � �)A(I � �)�xkk is ultimately O(� ) and, on the other hand, thenorm of the projetion of f � A�xk � B�yk onto N(BT ) reahes the level of O(u). It isnot lear from (17) whether the whole residual f � A�xk � B�yk will be ultimately O(� )or O(u). It strongly depends on the bak-substitution sheme.In the updated sheme (14), the gap between the residuals f �A�xk �B�yk and �r(x)k anbe bounded as kf �A�xk �B�yk � �r(x)k k � O(u)�(B)1� ��(B) (kfk+ kAk �Xk);Thus using the simple update formula makes the �rst omponent of the residual in (2)stagnating ultimately on the level proportional to unit roundo�.In the diret substitution sheme (15), the gap between the residuals f�A�xk�B�yk and�r(x)k an be bounded askf �A�xk �B�yk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk+ kAkk�xkk)+ O(u)�(B)1� ��(B)(kfk + kAk �Xk):Comparing this sheme with the generi update formula, the �rst omponent of theresidual in (2) ultimately stagnates on the level proportional to the parameter � .



2. NUMERICAL STABILITY OF SOME KRYLOV SUBSPACE METHODS 15In the orreted diret substitution sheme (16), the gap between the residuals f�A�xk�B�yk and �r(x)k an be bounded askf �A�xk �B�yk � (I ��)�r(x)k k � O(u)�(B)1� ��(B)(kfk + kAk �Xk)for all k large enough. This sheme gives a similar auray as the generi update butit osts one additional solution of the least squares problem with B.For the error norms, we have the same results as in the ase of the Shur omplementmethod { they do not depend on the bak-substitution sheme and ultimately stagnateon the level proportional to � .
2. Numerical stability of some residual minimizing iterative methodsIn this setion we summarize the results of the seond part of the thesis. We onsiderertain Krylov subspae methods for solving a system of linear algebrai equations(18) Ax = b; A 2 R

N�N ; b 2 R
N ;where A is a large and sparse nonsingular matrix that is, in general, nonsymmetri.A Krylov subspae method builds a sequene of iterates xn (n = 0; 1; 2; : : :) suh thatxn 2 x0 + Kn(A; r0), where Kn(A; r0) � spanfr0; Ar0; : : : ; An�1r0g is the nth Krylovsubspae generated by the matrix A from the residual r0 � b � Ax0 that orrespondsto the initial guess x0. Many approahes for de�ning suh approximations xn havebeen proposed, see, e.g., the books by Greenbaum [25℄, Meurant [43℄, and Saad [52℄.In partiular, due to their smooth onvergene behavior, minimum residual methodssatisfying(19) krnk = min~x2x0+Kn(A;r0) kb�A~xk; rn � b�Axn;are widely used, e.g., the GMRES algorithm of Saad and Shultz [53℄. In [11, 26, 48℄it was shown that this \lassial" version of the GMRES method is bakward stableprovided that the Arnoldi proess is implemented using the modi�ed Gram-Shmidtalgorithm or Householder reetions.Here we deal with a di�erent approah proposed by Walker and Zhou [65℄, who alledit the Simpler GMRES method. The minimum residual property (19) is equivalent tothe orthogonality ondition rn ? AKn(A; r0);where ? is the orthogonality relation indued by the standard Eulidean inner produth�; �i. We propose a generalization of the Simpler GMRES method that makes use of anynested sequene of matries Zn�1 � [z1; : : : ; zn�1℄ suh that the olumns of [q1; Zn�1℄form a basis of Kn(A; r0). We may assume that the olumns zk of Zn�1 have unitlength and need not be mutually orthogonal. The orthonormal basis Vn of AKn(A; r0)is obtained from the QR fatorization of the image of [q1; Zn�1℄:(20) A[q1; Zn�1℄ = VnUn:



16 CHAPTER 2. MAIN RESULTS OF THE THESISSine rn 2 r0 + AKn(A; r0) = r0 +R(Vn) and rn ? R(Vn), we an obtain the residualfrom rn = (I � VnV Tn )r0. To ompute it we apply the modi�ed Gram-Shmidt method,whih leads to the reursion(21) rn = rn�1 � �nvn; �n � hrn�1; vni:Sine the olumns of [q1; Zn�1℄ are a basis of Kn(A; r0), we an represent xn in the form(22) xn = x0 + [q1; Zn�1℄tn:Due to the minimum residual property, we have rn ? R(Vn), and thus simply(23) Untn = V Tn r0 = [�1; : : : ; �n℄T :Hene, one the residual norm is small enough, we an solve this triangular system andompute xn = x0 + [q1; Zn�1℄tn. We all this general approah the simpler approah.It inludes, as a speial ase, Simpler GMRES, where Zn�1 � Vn�1. We will also beinterested in the ase of the residual basis [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄, whih we willall SGMRES/RB, where \RB" refers to \residual basis".Reursion (21) reveals the onnetion between the simpler approah and yet anotherminimum residual approah. Let us set pn � A�1vn, Pn � [p1; : : : ; pn℄. Then, left-multiplying (21) by A�1 yields(24) xn = xn�1 + �npn;Now, note that left-multiplying (20) by A�1 yields(25) [q1; Zn�1℄ = PnUn:If Un is known from (20), a reursion for pn an be extrated from this formula. Wewill use here the terminology update approah for this ase and, more exatly, re�nedORTHODIR for the partiular ase with Zn�1 � Vn�1, sine it is a re�ned version ofthe residual norm minimizing ORTHODIR algorithm [14, 70℄. Likewise the ase withZn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whih an be viewed as a re�ned version of the ORTHOMINalgorithm [64, 70℄ (or the GCR method of Elman [13, 12℄) and is idential to theGMRESR method without preonditioning.
2.1. The maximum attainable accuracy. We analyze the numerial stability ofthe simpler and update approahes, and assume that only the omputations performedin (20), (23) and (25) are a�eted by rounding errors and that the omputed Q-fatorin the QR fatorization (20) is lose to an orthonormal matrix and has beed omputedin a bakward stable way. Hene we assume that the omputed (orthogonal) fator Vnand the upper triangular fator Un in the QR fatorization (20) satisfy(26) A[q1; Zn�1℄ = VnUn + Fn; kFnk � ukAkk[q1; Zn�1℄k;and kVn � V̂nk � u, where V̂n is the nearest orthonormal matrix satisfying V̂ Tn V̂n = I.For simpliity, we do not distinguish between Vn and V̂n and assume that Vn is exatly



2. NUMERICAL STABILITY OF SOME KRYLOV SUBSPACE METHODS 17orthonormal. In the simpler approah, we have from [66, 32℄ for the omputed solutiont̂n of (23) that(27) (Un +�Un)t̂n = Dne; j�Unj � ujUnj;where the absolute value and the inequality are understood omponent-wise. The ap-proximation x̂n to x is then omputed as(28) x̂n = x0 + [q1; Zn�1℄t̂n:In aordane with (26) we assume in the update approah that in �nite preisionarithmeti the omputed diretion vetors satisfy(29) [q1; Zn�1℄ = PnUn +Gn; kGnk � ukPnkkUnk:As in (24) we ompute then the approximate solution x̂n as(30) x̂n = x̂n�1 + �npn:The ruial quantity for the analysis of the maximum attainable auray is the gapbetween the true residual b � Ax̂n of the omputed approximation and the updatedresidual rn obtained from the update formula (21) desribing the projetion of the pre-vious residual; see [25, 29℄. In fat, one the true residual beomes negligible omparedto the true one, the gap equals the true residual divided by kAkkx̂nk, whih thereforean be thought of as the bakward error of the ultimate approximate solution x̂n. In thesimpler approah, the gap between the true residual b� Ax̂n and the updated residualrn satis�es kb�Ax̂n � rnkkAkkx̂nk � u�([q1; Zn�1℄)�1 + kx0kkx̂nk� ;while in the update approah, we havekb�Ax̂n � rnkkAkkx̂nk � u�(A)�([q1; Zn�1℄)�1 + kx0kkx̂nk� ;provided that 1� u�(A)�([q1; Zn�1℄) > 0. The bound on the ultimate bakward errorfor the update approah is worse that the one for the simpler approah. We see that forthe simpler approah the normwise bakward error is on the order of the roundo� unit,whereas for the update approah we have an upper bound proportional to the onditionnumber of A. Suh a di�erene is hard to be seen in pratie, but a model example anbe onstruted, where this di�erene is learly visible.In ontrast to the di�erene in the attainable auray measured by the bakward errors,it appears that the update approah leads to an approximate solution on essentially thesame auray level in the error as the simpler approah, as indiated by the estimatekxn � x̂nkkxk � u�(A)�([q1; Zn�1℄)kx̂nk+ kx0kkxk ;whih holds for both approahes. A similar phenomenon was also observed by Sleijpen,van der Vorst and Modersitzki [55℄ in the symmetri ase for GMRES and MINRES.



18 CHAPTER 2. MAIN RESULTS OF THE THESIS
2.2. Choice of the basis. First, we hoose Zn�1 = Vn�1, whih leads to the Sim-pler GMRES method of Walker and Zhou [65℄ and to the re�ned version of ORTHODIRby Young and Jea [70℄, respetively. Hene, we hoose fq1; v1; : : : ; vn�1g as a basis ofKn(A; r0). If r0 62 AKn(A; r0), these vetors are linearly independent and hene form abasis. Note that if r0 2 AKn(A; r0), then the ondition (19) yields xn = A�1b, rn = 0,and any implementation of the minimum residual method will terminate. As observedby Liesen, Rozlo�zn��k and Strako�s [39℄, this hoie of the basis is not very suitable fromthe numerial stability point of view. This shortoming is reeted by the unboundedgrowth of the ondition number of [q1; Vn�1℄ expressed by the two-sided inequalitieskr0kkrn�1k � �([q1; Vn�1℄) � 2 kr0kkrn�1k :The onditioning of [q1; Vn�1℄ is thus related to the onvergene of the method; in par-tiular, it is inversely proportional to the atual relative norm of the residual. Hene, ifthe residual is small enough, Simpler GMRES and re�ned ORTHODIR behave unstably.Seond, we hoose Zn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whih leads to SGMRES/RB (whih wepropose as a more stable ounterpart of Simpler GMRES) and to the re�ned versionof ORTHOMIN by Vinsome [64℄ known also under the name GCR [13, 12℄. We have[q1; Zn�1℄ = RnB�1n , where Bn � diag(kr0k; : : : ; krn�1k), i.e., we hoose saled resid-uals r0; : : : ; rn�1 as the basis of Kn(A; r0). The linear independene of the residual isguaranteed by the stritly monotonous onvergene of their 2-norms and the onditionthat the exat solution was not reahed yet, i.e., r0 62 AKn(A; r0). Moreover, whenthe minimum residual method does not stagnate, the residuals form a well-onditionedbasis, as indiated by the estimate1 � �(RnB�1n ) � pnn; n �vuut1 + n�1Xk=1 krk�1k2 + krkk2krk�1k2 � krkk2 :We de�ne the quantity n as the stagnation fator. The onditioning of RnB�1n isthus related to the onvergene of the method, but in ontrast to the onditioning of[q1; Vn�1℄, it is related to the intermediate derease of the residual norms, not to theresidual derease with respet to the initial residual.



CHAPTER 3
Conclusions and open questionsIn this thesis we studied the numerial behavior of several iterative methods for thesolution of systems of linear algebrai equations. In the �rst part we looked at thenumerial behavior of ertain inexat saddle point solvers. In partiular, for severalmathematially equivalent implementations, we studied the inuene of inexat solutionof inner systems and estimate their maximum attainable auray. When onsideringthe outer iteration proess, our analysis lead to results similar to ones whih an beobtained assuming exat arithmeti. The situation was di�erent, when we looked atthe residuals in the saddle point system. We showed that some implementations leadultimately to residuals on the level of roundo� unit independently on the fat that theinner systems were solved inexatly. Indeed, our results on�rm that the generi andatually the heapest implementations deliver the approximate solutions, whih satisfyeither the seond or the �rst blok equation to the working auray. In addition, theimplementations with orreted diret substitution are also very attrative. We gavea theoretial explanation for the behavior whih was probably observed or is alreadytaitly known. The implementations that we point out as optimal are atually those,whih are widely used and suggested in appliations. It appears that, when measured interms of the errors, the maximum attainable auray level is similar for all onsideredimplementations and it is proportional to the bakward error tolerane of inner systems.In the seond part we studied the numerial behavior of several minimum residual meth-ods mathematially equivalent to GMRES. Two general formulations were analyzed: thesimpler approah that does not require an upper Hessenberg fatorization and the updateapproah whih is based on generating a sequene of appropriately omputed diretionvetors. It was shown that for the simpler approah our analysis leads to an upperbound for the bakward error proportional to the roundo� unit, whereas for the updateapproah the same quantity an be bounded by a term proportional to the onditionnumber of A. Although our analysis suggests that there maybe a di�erene betweenboth approahes up to the order of �(A), in pratie they behave very similarly and itis very diÆult to �nd an example with a signi�ant di�erene in the limiting auray.Moreover, when looking at the errors, we note that both approahes lead essentially tothe same auray of the omputed approximate solutions.We indiated that the hoie of the basis [q1; Zn�1℄ is the most important issue for thestability of the onsidered shemes. Our analysis supports the well-known fat that, evenwhen implemented with the best possible orthogonalization tehniques, Simpler GMRESand ORTHODIR are inherently less stable due to the hoie [q1; Zn�1℄ = [q1; Vn�1℄.19



20 CHAPTER 3. CONCLUSIONS AND OPEN QUESTIONSThe situation beomes signi�antly better, when we use the residual basis [q1; Zn�1℄ =[ r0kr0k ; : : : ; rn�1krn�1k ℄. This hoie leads to the popular GCR, ORTHOMIN and GMRESRmethods, whih are widely used in appliations. Assuming some reasonable residualderease (whih happens almost always in �nite preision arithmeti), we showed thatthis sheme is quite eÆient and proposed a onditionally bakward stable variant (alledSGMRES/RB here). Our theoretial results in a sense justify the use of the GCRmethodin pratial omputations.There are several open problems onneted to the topi of this thesis.
Various stopping criteria for inner systems. The analysis of segregated saddlepoint solvers is based on the bakward error stopping riterion in inner systems. It ouldbe interesting to ompare other stopping riteria based, e.g., on the relative residualsor estimates of energy errors in the Shur omplement method. The relation betweenthe A-norm of x� xk and the BTA�1B-norm of y � yk an lead to a stopping riterionbased on the energy norm of x� xk. However, it is not ompletely lear how to do this,when the systems with A are not solved exatly.
Corrected substitution in stationary iterative methods. We saw that for theShur omplement redution and null-spae projetion methods, it is more preferable toupdate the approximation xk+1 using the orreted diret substitution than to omputeit diretly. Analogous results hold also for stationary iterative methods. Consider thesystem Ax = b with a nonsingular matrix A and its splitting A = M � N , where Mis also nonsingular. A stationary iterative method then generates the approximationsto x satisfying Mxk+1 = Nxk + b starting from some x0. Higham and Knight [33℄analyzed this implementation in �nite preision arithmeti, and they showed that thelimiting auray depends on the maximum relative norm of the approximate solutions�xi (i = 0; : : : ; k). However, it is muh more bene�ial, in suh a ase, rather thanompute xk+1 = M�1(Nxk + b), to use the \orreted" formula xk+1 = xk +M�1rk,where rk = b � Axk. The �nal level of the residual f � A�xk � B�yk in the Shuromplement redution method with the orreted diret substitution does not dependon the maximum norm of the iterates during the whole iteration proess but only onthose in a few last iterations. The similar observation an be made also in the aseof the \orreted" implementation of the stationary iteration, and the idea an be alsoextended to two-stage iterative methods, e.g., when applying the SIMPLE method forthe solution of uid ow problems (see, e.g., [50℄).
Backward error analysis of segregated methods. At the end of the �rst partof the thesis, we interpret the inexat solution omputed with the Shur omplementredution method (using the generi update) as an exat solution of the saddle pointproblem with a perturbed upper-left matrix blok. The similar bakward error analysisshould be performed also for other implementations of the Shur omplement redution



21method and for the null-spae projetion method. Moreover, the analysis of the null-spae projetion should onsider also a partiular projetion method for omputing thediretion vetors.
Preconditioned residual basis. In the analysis of the minimal residual Krylovsubspae methods, we did not onsider the issue of preonditioning or, we assume, thatthe system Ax = b is already preonditioned. It does not make muh sense to preon-dition the methods using the basis [q1; Vn�1℄ suh as Simpler GMRES or ORTHODIRdue to their inherent instability. One an restart the method to overome this problem,but note that the restart is neessary when the method beomes unstable, i.e., whenit onverges fast! It seems reasonable to use (�xed or exible) preonditioning in thease of the residual basis (the preonditioned SGMRES/RB and GCR). It is sometimesobserved that the preonditioned residual basis of GCR (i.e., GMRESR [63℄) is morepreferable than, e.g., preonditioned GMRES (with a �xed preonditioner) or exibleGMRES [51℄, whih use the preonditioned orthonormal basis of Kn(A; r0). Moreover,faster onvergene ould be observed when using preonditioned residuals. This issueneeds to be analyzed further.





Bibliography[1℄ M. Arioli and C. Fassino. Roundo� error analysis of algorithms based on Krylov subspaemethods. BIT, 36(2):189{206, 1996.[2℄ M. Arioli and F. Romani. Stability, onvergene, and onditioning of stationary iterativemethods of the form x(i+1) = Px(i) + q for the solution of linear systems. IMA J. Numer.Anal., 12:21{30, 1992.[3℄ W. E. Arnoldi. The priniple of minimized iterations in the solution of the matrix eigenvalueproblem. Quart. Appl. Math., 9:17{29, 1951.[4℄ O. Axelsson and P. S. Vassilevski. A blak box generalized onjugate gradient solver withinner iterations and variable-step preonditioning.SIAM J. Matrix Anal. Appl., 12(4):625{644, 1991.[5℄ M. Benzi, G. H. Golub, and J. Liesen. Numerial solution of saddle point problems. AtaNumer., 14:1{137, 2005.[6℄ A. M. Bollen. Numerial stability of desent methods for solving linear equations. Numer.Math., 43:361{377, 1984.[7℄ A. Bouras and V. Frayss�e. Inexat matrix-vetor produts in Krylov methods for solvinglinear systems: a relaxation strategy. SIAM J. Matrix Anal. Appl., 26(3):660{678, 2005.[8℄ A. Bouras, V. Frayss�e, and L. Giraud. A relaxation strategy for inner-outer linear solvers indomain deomposition methods. Tehnial Report TR/PA/00/17, CERFACS, Frane, 2000.[9℄ D. Braess, P. Deuhard, and K. Lipnikov. A subspae asadi multigrid method for mortarelements. Computing, 69(3):205{225, 2002.[10℄ D. Braess and R. Sarazin. An eÆient smoother for the Stokes problem. Appl. Numer.Math., 23(1):3{19, 1997.[11℄ J. Drko�sov�a, A. Greenbaum, M. Rozlo�zn��k, and Z. Strako�s. Numerial stability of GMRES.BIT, 35(3):309{330, 1995.[12℄ S. C. Eisenstat, H. C. Elman, and M. H. Shultz. Variational iterative methods for nonsym-metri systems of linear equations. 20(2):345{357, 1983.[13℄ H. C. Elman. Iterative methods for large sparse nonsymmetri systems of linear equa-tions. PhD thesis, New Haven, 1982.[14℄ D. K. Faddeev and V. N. Faddeeva.Computational Methods of Linear Algebra. Fizmatgiz,Moskow, 1960. in russian.[15℄ R. Flether. Conjugate gradient methods for inde�nite systems. In G. A. Watson, editor,Proeedings of the Dundee Biennial Conferene on Numerial Analysis, pages 73{89,New York, 1975. Springer-Verlag.[16℄ A. Frommer and D. B. Szyld. H-Splittings and two-stage iterative methods. Numer. Math.,63:345{356, 1992.[17℄ E. Giladi, G. H. Golub, and J. B. Keller. Inner and outer iterations for the Chebyshevalgorithm. SIAM J. Numer. Anal., 35:300{319, 1998.23



24 CHAPTER 3. BIBLIOGRAPHY[18℄ L. Giraud, S. Gratton, and J. Langou. Convergene in bakward error of relaxed GMRES.SIAM J. Si. Comput., 29(2):710{728, 2007.[19℄ G. H. Golub. Bounds for the round-o� errors in the Rihardson seond order method. BIT,2:212{223, 1962.[20℄ G. H. Golub and M. L. Overton. The onvergene of inexat Chebyshev and Rihardsoniterative methods for solving linear systems. Numer. Math., 53(5):571{593, 1988.[21℄ G. H. Golub and Q. Ye. Inexat preonditioned onjugate gradient method with inner-outeriteration. SIAM J. Si. Comput., 21(4):1305{1320, 1999.[22℄ N. I. M. Gould, M. E. Hribar, and J. Noedal. On the solution of equality onstrained qua-drati programming problems arising in optimization. SIAM J. Si. Comput., 23(4):1376{1395, 2001.[23℄ A. Greenbaum. Behavior of slightly perturbed Lanzos and onjugate-gradient reurrenes.Linear Algebra Appl., 113:7{63, 1989.[24℄ A. Greenbaum. Auray of omputed solutions from onjugate-gradient-like methods. InM. Natori and T. Nodera, editors, Advanes in Numerial Methods for Large Sparse Setsof Linear Systems, volume 10, pages 126{138, Keio University, Yokohama, Japan, 1994.[25℄ A. Greenbaum. Estimating the attainable auray of reursively omputed residual meth-ods. SIAM J. Matrix Anal. Appl., 18(3):535{551, 1997.[26℄ A. Greenbaum, M. Rozlo�zn��k, and Z. Strako�s. Numerial behaviour of the modi�ed Gram-Shmidt GMRES implementation. BIT, 37(3):706{719, 1997.[27℄ A. Greenbaum and Z. Strako�s. Prediting the behaviour of �nite preision Lanzos andonjugate gradient omputations. SIAM J. Matrix Anal. Appl., 13:121{137, 1992.[28℄ M. H. Gutkneht and M. Rozlo�zn��k. Residual smoothing tehniques: do they improve thelimiting auray of iterative solvers? BIT, 41(1):86{114, 2001.[29℄ M. H. Gutkneht and Z. Strako�s. Auray of two three-term and three two-term reurrenesfor Krylov spae solvers. SIAM J. Matrix Anal. Appl., 22(1):213{229, 2000.[30℄ S. J. Hammarling and J. H. Wilkinson. The pratial behaviour of linear iterative methodswith partiular referene to S.O.R. Tehnial Report NAC 69, National Physial Laboratory,England, Sept. 1976.[31℄ M. R. Hestenes and E. Stiefel. Methods of onjugate gradients for solving linear systems. J.Res. Natl. Bur. Stand., 49:409{436, 1952.[32℄ N. J. Higham. Auray and Stability of Numerial Algorithms. SIAM, Philadelphia,1996.[33℄ N. J. Higham and P. A. Knight. Componentwise error analysis for stationary iterative meth-ods. In C. D. Meyer and R. J. Plemmons, editors, Linear Algebra, Markov Chains, andQueueing Models, volume 48 of IMA Volumes in Mathematis and Its Appliations,pages 29{46, 1993.[34℄ P. Jir�anek and M. Rozlo�zn��k. Limiting auray of segregated solution methods for nonsym-metri saddle point problems. J. Comput. Appl. Math., 2007. to appear.[35℄ P. Jir�anek and M. Rozlo�zn��k. Maximum attainable auray of inexat saddle point solvers.SIAM J. Matrix Anal. Appl., 2007. to appear.[36℄ P. Jir�anek, M. Rozlo�zn��k, and M. H. Gutkneht. How to make Simpler GMRES and GCRmore stable. SIAM J. Matrix Anal. Appl., 2007. submitted.[37℄ P. J. Lanzkron, D. J. Rose, and D. B. Szyld. Convergene of nested lassial iterativemethods for linear systems. Numer. Math., 58:685{702, 1991.[38℄ C. Lanzos. An iteration method for the solution of the eigenvalue problem of linear di�er-ential and integral operators. J. Res. Natl. Bur. Stand., 45:255{281, 1950.



25[39℄ J. Liesen, M. Rozlo�zn��k, and Z. Strako�s. Least squares residuals and minimal residual meth-ods. SIAM J. Si. Comput., 23(5):1503{1525, 2002.[40℄ J. Liesen and Z. Strako�s. On numerial stability in large sale linear algebrai omputations.Z. Angew. Math. Meh., 85:307{325, 2005.[41℄ J. Liesen and P. Tih�y. Convergene analysis of Krylov subspae methods. GAMM Mitt.Ges. Angew. Math. Meh., 27(2):153{173 (2005), 2004.[42℄ M. S. Lynn. On the round-o� error in the method of suessive overrelaxation. Math.Comp., 18(85):36{49, 1964.[43℄ G. Meurant. Computer Solution of Large Linear Systems. North Holland, 1999.[44℄ N. K. Nihols. On the onvergene of two-stage iterative proesses for solving linear equa-tions. SIAM J. Numer. Anal., 10(3):460{469, 1973.[45℄ Y. Notay. On the onvergene rate of the onjugate gradients in presene of rounding errors.Numer. Math., 65:301{317, 1993.[46℄ Y. Notay. Flexible onjugate gradients. SIAM J. Si. Comput., 22(4):1444{1460, 2000.[47℄ C. C. Paige. Error analysis of the Lanzos algorithm for tridiagonalizing a symmetri matrix.J. Inst. Math. Appl., 18:341{349, 1976.[48℄ C. C. Paige, M. Rozlo�zn��k, and Z. Strako�s. Modi�ed Gram-Shmidt (MGS), least squares,and bakward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1):264{284,2006.[49℄ C. C. Paige and Z. Strako�s. Residual and bakward error bounds in minimum residualKrylov subspae methods. SIAM J. Si. Comput., 23(6):1899{1924, 2002.[50℄ S. V. Parankar. Numerial Heat Transfer and Fluid Flow. MGraw-Hill, 1980.[51℄ Y. Saad. Flexible inner-outer preonditioned GMRES algorithm. SIAM J. Si. Comput.,14(2):461{469, 1993.[52℄ Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.[53℄ Y. Saad and M. H. Shultz. GMRES: a generalized minimal residual algorithm for solvingnonsymmetri linear systems. SIAM J. Si. Statist. Comput., 7(3):856{869, 1986.[54℄ V. Simonini and D. B. Szyld. Theory of inexat Krylov subspae methods and appliationsto sienti� omputing. SIAM J. Si. Comput., 25(2):454{477, 2003.[55℄ G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. Di�erenes in the e�ets ofrounding errors in Krylov solvers for symmetri inde�nite linear systems. SIAM J. MatrixAnal. Appl., 22(3):726{751, 2000.[56℄ P. Sonneveld. CGS, A fast Lanzos-type solver for nonsymmetri linear systems. SIAM J.Si. Statist. Comput., 10:36{52, 1989.[57℄ E. Stiefel. Relaxationsmethoden bester Strategie zur L�osung linearer Gleihungssysteme.Comment. Math. Helv., 29:157{179, 1955.[58℄ Z. Strako�s. On the real onvergene rate of the onjugate gradient method. Linear AlgebraAppl., 154{156:535{549, 1991.[59℄ J. van den Eshof and G. L. G. Sleijpen. Inexat Krylov subspae methods for linear systems.SIAM J. Matrix Anal. Appl., 26(1):125{153, 2004.[60℄ J. van den Eshof, G. L. G. Sleijpen, and M. B. van Gijzen. Relaxation strategies for nestedKrylov methods. J. Comput. Appl. Math., 177(2):125{153, 2005.[61℄ A. van der Sluis and H. A. van der Vorst. The rate of onvergene of onjugate gradients.Numer. Math., 48:543{560, 1986.[62℄ H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly onverging variant of Bi-CG forthe solution of non-symmetri linear systems. SIAM J. Si. Statist. Comput., 13:631{644,1992.



26 CHAPTER 3. BIBLIOGRAPHY[63℄ H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numer.Linear Algebra Appl., 1(4):369{386, 1994.[64℄ P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneouslinear equations. In Proeedings Fourth Symposium on Reservoir Simulation, SPE ofAIME, Los Angeles, Feb. 1976.[65℄ H. F. Walker and L. Zhou. A simpler GMRES. Numer. Linear Algebra Appl., 1(6):571{581,1994.[66℄ J. H. Wilkinson. Rounding Errors in Algebrai Proesses. Prentie Hall, In., New Jersey,1963.[67℄ H. Wo�zniakowski. Numerial stability of the Chebyshev method for the solution of largelinear systems. Numer. Math., 28:191{209, 1977.[68℄ H. Wo�zniakowski. Round-o� error analysis of iterations for large linear systems. Numer.Math., 30:301{314, 1978.[69℄ H. Wo�zniakowski. Roundo�-error analysis of a new lass of onjugate-gradient algorithms.Linear Algebra Appl., 29:507{529, 1980.[70℄ D. M. Young and K. C. Jea. Generalized onjugate gradient aeleration of nonsymmetriz-able iterative methods. Linear Algebra Appl., 34:159{194, 1980.





N�azev: Limiting Auray of Iterative MethodsAutor: Pavel Jir�anekVydavatel: Tehnik�a univerzita v LiberiShv�aleno: Rektor�atem TU v Liberi dne 5. 12. 2007, �j. RE 163/07Vy�slo: v prosini 2007Po�et stran: 36Vyd�an��: prvn��Tisk�arna: Vysoko�skolsk�y podnik Libere, s.r.o., H�alkova 6, Libere�C��slo publikae: 55-119-07Tato publikae nepro�sla redak�n�� ani jazykovou �upravou.
ISBN: 978-80-7372-285-2


