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AbstraktJak je zn�amo, zaokrouhlova
�� 
hyby a nep�resn�e �re�sen�� vnit�rn��
h �uloh maj�� vliv nanumeri
k�e 
hov�an�� itera�
n��
h metod; obe
n�e sni�zuj�� jeji
h ry
hlost konvergen
ea ovliv�nuj�� kone�
nou p�resnost spo�
ten�eho �re�sen��. V pr�a
i se zab�yv�ame anal�yzoumaxim�aln�� dosa�ziteln�e p�resnosti n�ekter�y
h itera�
n��
h metod pro �re�sen�� soustavline�arn��
h algebrai
k�y
h rovni
.Dizerta
e je rozd�elena na dv�e �
�asti. Prvn�� z ni
h obsahuje anal�yzu limitn�� p�res-nosti metod krylovovsk�y
h podprostor�u pro �re�sen�� rozs�ahl�y
h �uloh sedlov�y
hbod�u. Uva�zujeme dva typy segregovan�y
h metod: metodu reduk
e na S
hur�uvdopln�ek a metodu projek
e na nulov�y prostor mimodiagon�aln��ho bloku. Ukazujese, �ze v�yb�er vzor
e pro zp�etnou substitu
i m�a vliv na maxim�aln�� dosa�zitelnoup�resnost p�ribli�zn�eho �re�sen�� spo�
ten�eho v aritmeti
e s kone�
nou p�resnost��.Druh�a �
�ast obsahuje anal�yzu numeri
k�eho 
hov�an�� n�ekter�y
h metod minim�aln��
hrezidu��, kter�e jsou matemati
ky ekvivalentn�� metod�e zobe
n�en�y
h minim�aln��
hrezidu�� GMRES. Srovn�av�ame dva hlavn�� postupy: jeden, kde p�ribli�zn�e �re�sen�� jevypo�
teno ze soustav s horn�� troj�uheln��kovou mati
��, a jeden, kde je p�ribli�zn�e�re�sen�� upravov�ano pomo
�� jednodu
h�eho rekurentn��ho vzor
e. Ukazuje se, �zev�yb�er b�aze m�a vliv na numeri
k�e 
hov�an�� v�ysledn�e implementa
e. Zat��m
o me-tody Simpler GMRES a ORTHODIR jsou m�en�e stabiln�� d��ky �spatn�e podm��n�e-nosti zvolen�e b�aze, b�aze zkonstruovan�a z rezidu�� m�u�ze b�yt dob�re podm��n�en�a,jestli�ze jsou normy rezidu�� dostate�
n�e klesaj��
��. Tyto v�ysledky vedou k nov�e im-plementa
i, kter�a je podm��n�en�e zp�etn�e stabiln��, a v jist�em smyslu i vysv�etluj��experiment�aln�e ov�e�ren�y fakt, �ze metoda GCR (ORTHOMIN) d�av�a v prakti
k�y
haplika
��
h velmi p�resn�e aproxima
e �re�sen��.Kl���
ov�a slova. Rozs�ahl�e line�arn�� soustavy, metody krylovovsk�y
h podprostor�u,�ulohy sedlov�eho bodu, metoda reduk
e na S
hur�uv dopln�ek, metoda projek
e nanulov�y prostor mimodiagon�aln��ho bloku, metody minim�aln��
h rezidu��, numeri
k�astabilita, anal�yza zaokrouhlova
��
h 
hyb.
i





Abstra
tIt is known that inexa
t solutions of inner systems and rounding errors a�e
tthe numeri
al behavior of iterative methods. In parti
ular, they slow down their
onvergen
e rate and have an e�e
t on the ultimate a

ura
y of the 
omputedsolution. Here we fo
us on the analysis of the maximum attainable a

ura
y ofseveral iterative methods for solving systems of linear algebrai
 equations.The thesis is divided into two parts. The �rst part is devoted to the analy-sis of Krylov subspa
e solvers applied to the large-s
ale saddle point problems.Two main representatives of segregated solution approa
hes are analyzed: theS
hur 
omplement redu
tion method and the null-spa
e proje
tion method. Weshow that the 
hoi
e of the ba
k-substitution formula 
an 
onsiderably in�uen
ethe maximum attainable a

ura
y of approximate solutions 
omputed in �nitepre
ision arithmeti
.In the se
ond part we analyze numeri
al behavior of several minimum residualmethods, whi
h are mathemati
ally equivalent to the GMRES method. Twomain approa
hes are 
ompared: the approa
h, whi
h 
omputes the approximatesolution from an upper triangular system, and the approa
h where the approx-imate solutions are updated with a simple re
ursion formula. We show that adi�erent 
hoi
e of the basis 
an signi�
antly in�uen
e the numeri
al behaviorof resulting implementation. While Simpler GMRES and ORTHODIR are lessstable due to ill-
onditioning of 
hosen basis, the residual basis remains well-
onditioned when we have a reasonable residual norm de
rease. These resultslead to a new implementation, whi
h is 
onditionally ba
kward stable, and ina sense explain an experimentally observed fa
t that the GCR (ORTHOMIN)method delivers in pra
ti
al 
omputations very a

urate approximate solutionswhen it 
onverges fast enough without stagnation.Key words. large-s
ale linear systems, Krylov subspa
e methods, saddle pointproblems, S
hur 
omplement redu
tion, null-spa
e proje
tion method, minimumresidual methods, numeri
al stability, rounding error analysis.
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ÀííîòàöèÿÈçâåñòíî, ÷òî íåàêêóðàòíûå ðåøåíèÿ âíóòðåííèõ ïðîáëåì è îøèáêè îêðóãëåíèÿîòðàæàþòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèþ èòåðàöèîííûõ ìåòîäîâ. Îíè êîíêðåò-íî çàòîðìîçÿò èõ ñêîðîñòü ñõîäèìîñòè è îêàçûâàþò âëèÿíèå íà �èíàëüíóþ àê-êóðàòíîñòü âû÷èñëåííîãî ðåøåíèÿ. Ìû çäåñü çàíèìàåìñÿ àíàëèçîì ìàêñèìàëüíîéäîñòèæèìîé àêêóðàòíîñòè íåêîòîðûõ èòåðàöèîííûõ ìåòîäîâ äëÿ ðåøåíèÿ ñèñòåìëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé.Ýòà äèññåðòàöèÿ ðàçäåëåíà íà äâå ÷àñòè. Ïåðâàÿ çàíèìàåòñÿ àíàëèçîì ëèìèòíîéàêêóðàòíîñòè ìåòîäîâ ïðîñòðàíñòâ Êðûëîâà äëÿ ðåøåíèÿ áîëüøèõ ñèñòåì ñåäåëü-íûõ òî÷åê. Ìû ðàññìàòðèâàåì äâà òèïû ñåãðåãàöèîííûõ ìåòîäîâ: ìåòîäîì ïðåîá-ðàçîâàíèÿ íà äîïîëíåíèå Øóðà è ìåòîäîì ïðîåêöèè íà ÿäðî ìèìîäèàãîíàëüíîãîáëîêà. Ìû óêàçûâàåì, ÷òî âûáîð �îðìóëû îáðàòíîé ïîäñòàíîâêè îòðàæàåòñÿ íàìàêñèìàëüíîé äîñòèæèìîé àêêóðàòíîñòè ïðèáëèçèòåëüíîãî ðåøåíèÿ âû÷èñëåííî-ãî â àðè�ìåòèêå ñ êîíå÷íîé òî÷íîñòüþ.Âòîðàÿ ÷àñòü ñîäåðæèò àíàëèç âû÷èñëèòåëüíîãî ïîâåäåíèÿ íåñêîëüêèõ ìåòîäîâ ìè-íèìàëüíûõ íåâÿçîê, êîòîðûå ìàòåìàòè÷åñêè ýêâèâàëåíòíûå ìåòîäó ¾GMRES¿. Ìûñðàâíèâàåì äâà ãëàâíûå ìåòîäû: îäèí, êîòîðûé îïðåäåëÿåò ïðèáëèæ¼ííîå ðåøåíèåèç ñèñòåìû ñ âåðõíåé òðåóãîëüíîé ìàòðèöîé, è îäèí, ãäå ïðèáëèæ¼ííîå ðåøåíèåêîððåêòèðîâàííîå ñ ïîìîùüþ ïðîñòîé ðåêóððåíòíîé �îðìóëû. Ìû óêàçûâàåì, ÷òîâûáîð áàçû îòðàæàåòñÿ íà âû÷èñëèòåëüíîì ïîâåäåíèè êîíå÷íîãî ìåòîäà. Ïîêà ìå-òîäû ¾Simpler GMRES¿ è ¾ORTHODIR¿ ìåíåå ñòàáèëüíûå çà ñ÷åò ïëîõî îáóñëîâ-ëåííîé áàçû, áàçà íåâÿçîê ìîæåò áûòü õîðîøî îáóñëîâëåííàÿ, åñëè íîðìû íåâÿçîêäîñòàòî÷íî ñíèæàþòñÿ. Ýòè ðåçóëüòàòû âåäóò ê íîâîìó ìåòîäó, êîòîðûé óñëîâíîîáðàòíî ñòàáèëüíûé, è â îïðåäåëåííîì ñìûñëå îáúÿñíÿþò ýêñïåðèìåíòàëüíî óäî-ñòîâåðåííûé �àêò, ÷òî ìåòîä ¾GCR¿ (òàêæå èçâåñòíûé êàê ¾ORTHOMIN¿) äà¼òâ ïðàêòè÷åñêèõ àïïëèêàöèÿõ î÷åíü àêêóðàòíûå àïïðîêñèìàöèè ðåøåíèÿ.Êëþ÷åâûå ñëîâà. áîëüøèå ëèíåéíûå óðàâíåíèÿ, ìåòîäû ïðîñòðàíñòâ Êðûëîâà,ìåòîä ïðåîáðàçîâàíèÿ íà äîïîëíåíèå Øóðà, ìåòîä ïðîåêöèè íà ÿäðî ìèìîäèàãî-íàëüíîãî áëîêà, ìåòîäû ìèíèìàëüíûõ íåâÿçîê, âû÷èñëèòåëüíàÿ ñòàáèëüíîñòü, àíà-ëèç îøèáîê îêðóãëåíèÿ.
v
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CHAPTER 1
IntroductionConsider a system of linear algebrai
 equations in the form(1) Ax = b;where A is an N � N nonsingular matrix and b is a right-hand side ve
tor. Usuallywe assume that A is large and sparse as it is, e.g., when A is a dis
rete representationof some partial di�erential operator. We are looking for the solution of (1) or for itssuÆ
iently a

urate approximation.The methods for solving (1) are usually 
lassi�ed as dire
t and iterative. Dire
t methodsare mostly based on the su

essive elimination of unknowns. They fa
torize the systemmatrix (with suitably ordered rows or 
olumns), e.g., into the produ
t of lower and uppertriangular matri
es as in the Gaussian elimination, or to the produ
t of an orthogonaland a triangular matrix as in the QR fa
torization. The solution of (1) 
an be thenfound by solving systems with these fa
tors. In general, dire
t methods are well suitedfor dense and moderately large systems. However, when solving a large sparse system,the number of newly 
reated non-zero elements in both fa
tors 
an heavily a�e
t the
omputational time and storage requirements. In addition, even though dire
t methodsdeliver in theory the exa
t solution, there is no need for su
h an a

ura
y in pra
ti
edue to un
ertain data or dis
retization errors.Therefore, iterative methods be
ame very popular when solving sparse systems. Aniterative method for the solution of (1) generates a sequen
e of approximations xk sothat they ideally 
onverge to the exa
t solution. The system matrix need not to be ex-pli
itly stored. In ea
h iteration we need only to perform a matrix-ve
tor multipli
ation.Moreover, the approximations 
onverge often monotonously (or almost monotonously)in some �xed norm and so we 
an stop the iteration pro
ess when the approximationis a

urate enough. However, the 
onvergen
e rate of iterative methods 
an be slow ingeneral (depending on properties of the system) and thus hybrid te
hniques 
ombiningthe iterative and dire
t approa
h, su
h as pre
onditioned iterations, are widely used tomake the pro
ess more eÆ
ient.In general, a solution method (no matter if a dire
t or iterative one) 
an be interpretedas a solution of a sequen
e of subproblems whi
h are simpler to solve. In dire
t methodswe 
an identify following subproblems: the fa
torization of the system matrix and thesolution of systems with 
omputed fa
tors. In ea
h step of an iterative method, wemultiply a ve
tor by the system matrix and optionally solve the system with a pre
ondi-tioner whi
h 
an be also regarded as the subproblems solved repeatedly in the iteration1



2 CHAPTER 1. INTRODUCTIONloop. E.g., the matrix-ve
tor multipli
ation 
an involve the solution of an inner systemas in the S
hur 
omplement redu
tion method whi
h we will dis
uss later.
1. The state of the artFrom now on we restri
t ourselves to iterative methods. In pra
ti
e, the 
omputationsare a�e
ted by errors. They are never performed exa
tly due to rounding errors andsome of them are done inexa
tly with a pres
ribed level of a

ura
y, espe
ially when
omputations with the working a

ura
y 
ould be a waste of time and resour
es. E.g.,matrix-ve
tor produ
ts may involve a solution of inner systems, whi
h (being large andsparse) 
an be solved inexa
tly with another iterative method. Pre
onditioning 
anbe also applied through some iterative pro
ess. Usually, a method is 
alled inexa
tif some involved subproblems are solved only approximately even though we assumeexa
t arithmeti
. Rounding errors 
an also 
onsiderably a�e
t the behavior of iterativemethods. Sin
e the behavior of inexa
t iterative methods and \exa
t" methods in �nitepre
ision arithmeti
 is similar, we will not stri
tly distinguish between the sour
es oferrors and we will treat them 
ommonly in a uni�ed approa
h in the following dis
ussion.When an inexa
tness is taken into a

ount, there are several important questions whi
hneed to be answered. In the following we give a brief overview of the state of art inthis �eld (in
luding results in �nite pre
ision arithmeti
). Generally the inexa
tnessintrodu
ed in an iterative method has two main e�e
ts:� The errors 
aused by inexa
t 
omputations are propagated throughout theiterative pro
ess. Ideally the error propagation should be restrained so that thelo
al errors are not magni�ed. There is a limit in the a

ura
y whi
h 
annotbe ex
eeded and it is usually 
alled the maximum attainable (or limiting)a

ura
y.� The 
onvergen
e of an inexa
t iterative method 
an be delayed with respe
tto the 
onvergen
e of the same method, where all 
omputations are performedexa
tly. We may ask how many additional iterations should be performed su
hthat the same a

ura
y is attained as in the ideal (exa
t) 
ase.In this thesis we fo
us on the limiting a

ura
y of inexa
t iterative methods. Thee�e
ts of inexa
t matrix-ve
tor multipli
ations in iterative methods (also referred asrelaxed methods) on the maximum attainable a

ura
y were studied simultaneouslyby van den Eshof and Sleijpen [59℄, and by Simon
ini and Szyld [54℄. Their analysisexplains the experimental results of Bourass and Frayss�e [7℄ (the report with an extensiveexperimental basis was published in 2000) who proposed a relaxation strategy for thea

ura
y of the 
omputed matrix-ve
tor produ
t. They have shown that to a
hieve thepres
ribed a

ura
y of the 
omputed solution we need to 
ompute the matrix-ve
torprodu
t with the a

ura
y (measured by the ba
kward error) inversely proportionalto the a
tual residual norm. The papers [59, 54℄ provide the theoreti
al support forthis strategy further developed in [60℄. This topi
 is 
losely related to the 
exiblepre
onditioning, see, e.g., [4, 21, 46, 54, 18℄. Here we try to adopt the ba
kward error



1. THE STATE OF THE ART 3analysis, widely used in the study of rounding errors, and we analyze the e�e
ts of inexa
t
omputations on the limiting a

ura
y of 
ertain iterative methods. The 
omputationsare performed in the presen
e of rounding errors while solutions to 
ertain subproblemsare done with more relaxed a

ura
y. We want to know how the inexa
tness of theseinner systems together with the errors 
aused by roundo� a�e
t the behavior of the
onsidered algorithms. It appears that some measures of the a

ura
y are ultimately onthe level proportional to the unit roundo�, while other measures depend on the a

ura
yof inner systems.The problem of numeri
al stability of 
lassi
al iterative methods was addressed in severalpapers. The �rst analyzes 
arried out by Golub [19℄ and Lynn [42℄ provide statisti
al andnon-statisti
al results for the se
ond order Ri
hardson and SOR method. The statisti
alerror analysis of 
lassi
al iterative methods was also performed by Arioli and Romani[2℄ 
larifying the relation between the 
onditioning of the pre
onditioned system matrixand the 
onvergen
e rate of the iterative method. In [33℄ Higham and Knight give theforward and ba
kward error analysis of a general one-step stationary method. Theiranalysis among other things shows that the a

ura
y of the 
omputed solution stronglydepends on the os
illations of norms of the iterates whi
h is a 
ommon observation notonly in the 
ase of 
lassi
al iterative methods. Moreover, even though the 
onvergen
eis driven by the spe
tral radius of the iteration matrix, the limiting a

ura
y dependsrather on the norm of its powers whi
h 
an be arbitrarily large in the early stage ofthe iterative pro
ess. This was observed by Hammarling and Wilkinson [30℄. Thestability of 
lassi
al iterative methods was also analyzed by Wo�zniakovski in [67, 68℄.He proved the forward stability of 
lassi
al methods like Ja
obi, Ri
hardson, Gauss-Seidel and SOR (for symmetri
 systems with the Property A) and Chebyshev method(for symmetri
 positive de�nite systems). However, the Chebyshev method appeared tobe not normwise ba
kward stable. In [20℄ Golub and Overton dis
uss the 
onvergen
erate of the se
ond order Ri
hardson and Chebyshev method. They 
onsider the inexa
tsolution of inner systems with uniformly bounded relative residuals. The a

ura
y ofthe 
omputed solution in the Chebyshev method is further analyzed by Giladi, Goluband Keller [17℄ who show the optimality of the uniform toleran
e used in [20℄. Whenthe system is solved by the 
lassi
al iterative method in ea
h step we must solve asimpler system indu
ed by the splitting of the system matrix. However, these systems
an be also solved iteratively. These methods, referred to as two-stage methods, wereaddressed, e.g., in [44, 37, 16℄.One of the most important result in the study of Krylov subspa
e methods is due to Paige[47℄. He provides the analysis of the behavior of the symmetri
 Lan
zos algorithm [38℄in the presen
e of rounding errors. This algorithm is 
losely related to the 
onjugategradient method by Hestenes and Stiefel [31℄. It was �rst studied by Wo�zniakowski[69℄ and Bollen [6℄. Wo�zniakowski shows that this method 
onverges in �nite pre
isionarithmeti
 at least linearly with the 
onvergen
e rate similar to the steepest des
entmethod. However, his analysis does not re
e
t the reality very well, sin
e the 
onvergen
eof the 
onjugate gradient method 
annot be 
hara
terized lo
ally but its a
tual behaviordepends on the whole iteration pro
ess; see, e.g., [61, 41℄ and the referen
es therein. The



4 CHAPTER 1. INTRODUCTIONnew insight into this problem was brought by Greenbaum [23℄ and further developedtogether with Strako�s [58, 27℄. It appears that the �nite pre
ision Lan
zos pro
ess aswell as the �nite pre
ision 
onjugate gradient method behave as their exa
t 
ounterpartsapplied to the matrix of (possibly mu
h) larger dimension with the eigenvalues 
lusterednear the eigenvalues of the original matrix. This issue was further dis
ussed by Notayin [45℄.The analysis of limiting a

ura
y of some 
lasses of iterative methods 
an be performed inrather general setting without referring to any parti
ular method. The methods based onthe 
oupled two-term re
urren
es were analyzed by Greenbaum in [24, 25℄. The papersfo
us mainly on the 
onjugate gradient method but the analysis holds for a larger setof methods. In parti
ular, the results of Greenbaum show that the highly irregular
onvergen
e behavior (expressed by the os
illations of norms of iterates) observed inthe 
ase of non-optimal iterative methods (su
h as BiCG [15℄ or CGS [56℄) 
an havean unfavorable e�e
t on the limiting a

ura
y of the 
omputed solution. A similarphenomenon is mentioned also by van der Vorst in [62℄, where the loss of a

ura
y isexplained by os
illations of residual norms. On the other hand, su
h os
ilations do noto

ur (or 
an be a priori bounded) in the 
ase of optimal methods su
h as 
onjugategradients and 
onjugate residuals [57℄ applied to symmetri
 positive de�nite problems,or in the 
ase of residual minimizing methods (Orthodir [70℄, Orthomin [64℄, GCR[12℄) for general nonsymmetri
 systems. The numeri
al stability of various (equivalent)methods using short re
urren
es was further studied by Gutkne
ht and Strako�s in [29℄and by Sleijpen, van der Vorst and Modersitzki in [55℄. In [28℄ Gutkne
ht and Rozlo�zn��kdis
uss the e�e
t of residual smoothing on the limiting a

ura
y.Finally we survey the results for the �nite pre
ision behavior of nonsymmetri
 Krylovsubspa
e methods with the full-term re
urren
es su
h as GMRES [53℄. The House-holder implementation of the underlying Arnoldi pro
ess [3℄ is quite straightforward toanalyze, see the paper by Drko�sov�a, Greenbaum, Rozlo�zn��k and Strako�s [11℄, and byArioli and Fassino [1℄. This is due to the almost exa
t orthogonality of the 
omputedKrylov subspa
e basis. However, when we use the 
heaper modi�ed Gram-S
hmidt im-plementation, the orthogonality is gradually lost during the iteration pro
ess. The lossof orthogonality however goes hand in hand with the de
rease of the ba
kward error ofthe a
tual 
omputed solution as observed by Greenbaum, Rozlo�zn��k and Strako�s in [26℄and further analyzed by Paige, Rozlo�zn��k and Strako�s in [49, 48℄. For more details see[40℄ and the referen
es therein.
2. Organization of the thesisThis thesis is divided into two main parts and is organized as follows. Chapter 3, whi
his based on the papers [35, 34℄, is devoted to the analysis of inexa
t methods for solvingsaddle point problems of the form A BBT 0! xy! =  f0! :



2. ORGANIZATION OF THE THESIS 5A brief overview on saddle point problems is presented in Chapter 2. We analyzetwo segregated methods based on the transformation of the whole inde�nite prob-lem to a redu
ed system with more preferable properties (smaller dimension, positive(semi)de�niteness). The redu
ed system is solved by a suitable iterative method givingthe approximations to one of the blo
k 
omponents of the solution ve
tor (x or y). Theremaining 
omponent is 
omputed via some ba
k-substitution formula. We 
onsiderthree di�erent but mathemati
ally equivalent formulas. In ea
h iteration we have tosolve either a nonsingular system with A, or a full rank least squares problem with B.Sin
e su
h systems are not usually solved exa
tly, we assume here that they are solvedwith a pres
ribed ba
kward error and study the e�e
t on the maximum attainable a

u-ra
y of the solution method together with the e�e
ts of rounding errors. Su
h inexa
tmethods have been also 
onsidered in many papers but most of them analyzed the delayof 
onvergen
e; see the referen
es in Chapter 3. Here we provide a qualitative analysis ofthe maximum attainable a

ura
y of the 
omputed solution measured by true residualsin the saddle point system, by true residuals in redu
ed systems and by forward errors ofthe 
omputed solutions. In addition, we show whi
h residuals (and how) 
an be a�e
tedby the possibly irregular 
onvergen
e behavior in the 
ase of the nonsymmetri
 blo
k A.The theoreti
al results are illustrated on numeri
al experiments.Chapter 4, based on the paper [36℄, is devoted to the analysis of several residual mini-mizing Krylov subspa
e methods, whi
h are mathemati
ally equivalent to the GMRESmethod [53℄. In 
ontrast to GMRES, they, in the nth iteration, build an orthonormalbasis of AKn(A; r0) instead of Kn(A; r0): Kn(A; r0) denotes the nth Krylov subspa
egenerated by the matrix A and the ve
tor r0. Two approa
hes are 
ompared: the ap-proa
h, whi
h 
omputes the approximate solution from an upper triangular system,and the approa
h, where the approximate solutions are updated step by step with asimple re
ursion formula. We 
onsider a general basis to generate the orthonormal ba-sis of AKn(A; r0), and it appears that, while Simpler GMRES and ORTHODIR areless stable due to ill-
onditioning of the 
hosen basis, the residual basis 
an be well-
onditioned, when we have a reasonable residual norm de
rease. These results lead toa new implementation, whi
h is 
onditionally ba
kward stable, and to the well knownGCR (ORTHOMIN) method, and in a sense explain an experimentally observed fa
tthat GCR (ORTHOMIN) delivers very a

urate approximate approximate solutions inpra
ti
al appli
ations. The theoreti
al results are illustrated on numeri
al experiments.In Chapter 5 we give 
on
lusions and dire
tions of the future work.
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CHAPTER 2
Main results of the thesis

1. Limiting accuracy of segregated saddle point solversIn this se
tion we summarize the results of the �rst part of the thesis. Consider thesolution of a saddle point system in the blo
k form(2)  A BBT 0! xy! =  f0! ;where the diagonal blo
k A 2 R
n�n is symmetri
 positive de�nite, and the o�-diagonalblo
k B 2 R

n�m has the full 
olumn rank. The solution ve
tor and the right-hand sideve
tor are partitioned 
onsistently with respe
t to the partitioning of the system ma-trix. Saddle point problems have re
ently attra
ted a lot of attention and appear to bea time-
riti
al 
omponent in the solution of large-s
ale problems in many appli
ations of
omputational s
ien
e and engineering. A large amount of work has been devoted to awide sele
tion of solution te
hniques varying from the fully dire
t approa
h, through theuse of iterative stationary or Krylov subspa
e methods up to the 
ombination of dire
tand iterative te
hniques in
luding pre
onditioned iterative s
hemes. For the ex
ellentsurvey on appli
ations, methods and results on numeri
al solution of saddle point prob-lems we refer to [5℄ and numerous referen
es therein. Signi�
antly less attention howeverhas been paid so far to the numeri
al stability aspe
ts. We 
on
entrate on the numeri
albehavior of s
hemes whi
h 
ompute separately the unknown ve
tors x and y: one ofthem is �rst obtained from a redu
ed system of a smaller dimension and on
e it hasbeen 
omputed, the other unknown is obtained by the ba
k-substitution solving exa
tlyor inexa
tly another redu
ed problem. The main representatives of su
h a segregatedapproa
h are the S
hur 
omplement redu
tion method and the null-spa
e proje
tionmethod. Here we analyze su
h algorithms whi
h 
an be interpreted as iterations forthe redu
ed system but 
ompute the approximate solutions xk and yk to both unknownve
tors x and y simultaneously.We 
on
entrate on the question what is the best a

ura
y we 
an get from the S
hur
omplement redu
tion method and the null-spa
e proje
tion method when inner sys-tems are solved with a pres
ribed a

ura
y in �nite pre
ision arithmeti
. The fa
t thatthe inner solution toleran
e strongly in
uen
es the a

ura
y of 
omputed iterates isknown and was studied in several 
ontexts. The general framework for understandinginexa
t Krylov subspa
e methods has been developed in [54℄ and [59℄. Assuming ex-a
t arithmeti
, the authors of [54℄ and [59℄ investigated the e�e
t of an approximately
omputed matrix-ve
tor produ
t in every iteration on the ultimate a

ura
y of several9



10 CHAPTER 2. MAIN RESULTS OF THE THESISsolvers and explained the su

ess of relaxation strategies for the inner a

ura
y toler-an
e from [7, 8, 18℄. The developed theory strongly exploits the parti
ular propertiesof an iterative method used for solving the asso
iated system. In the 
ontext of saddlepoint problems this requires a deep analysis of the outer iteration s
heme for solving theredu
ed S
hur 
omplement or proje
ted system.The theory developed here for the outer iteration pro
ess is similar to the analysis ofGreenbaum in [25, 24℄ who estimated the gap between the true and re
ursively updatedresidual for a general 
lass of iterative methods using 
oupled two-term re
ursions. Thedi�eren
e here is that every 
omputed approximate solution of inner problem is in-terpreted as an exa
t solution of a perturbed problem indu
ed by the a
tual stopping
riterion, while the theory of [25℄ 
onsidered only the rounding errors asso
iated witha �xed matrix-ve
tor multipli
ation. In 
ontrast to the theory of inexa
t Krylov meth-ods [54, 59℄ the bounds for the true residual in the outer iteration loop are obtainedwithout spe
ifying the solver used for solving the S
hur 
omplement or the proje
tedHessian system. It appears that the maximum attainable a

ura
y level in the outerpro
ess is mainly given by the inexa
tness of solving the inner problems and it is notfurther magni�ed by the asso
iated rounding errors. These results are thus similar toones whi
h 
an be obtained in exa
t arithmeti
.The situation is di�erent when looking at the numeri
al behavior of residuals asso
i-ated with the original saddle point system, whi
h des
ribe how a

urately are the twoblo
k equations of (2) satis�ed. It is shown that the attainable a

ura
y of 
omputedapproximate solutions then depends signi�
antly on the ba
k-substitution formula usedfor 
omputing the remaining unknowns. Our results show that independently of thefa
t that the inner systems are solved inexa
tly some ba
k-substitution s
hemes leadultimately to residuals on the roundo� unit level.
1.1. Schur complement reduction method. The S
hur 
omplement redu
tionmethod uses the equivalent formulation of (2) in the form A B0 BTA�1B! xy! =  fBTA�1f! ;whi
h is nothing but a blo
k Gaussian elimination applied to (2). This blo
k triangularsystem is solved by 
omputing the unknown y from the symmetri
 positive de�niteS
hur 
omplement system(3) BTA�1By = BTA�1fand then by 
omputing the unknown x from a system(4) Ax = f �By:Here we dis
uss algorithms whi
h 
ompute simultaneously approximations yk and xksolving iteratively the S
hur 
omplement system (3) and ideally ful�ll the �rst blo
kequation of (2), i.e., they satisfy Axk +Byk = f:



1. LIMITING ACCURACY OF SEGREGATED SADDLE POINT SOLVERS 11Without spe
ifying any parti
ular method, we assume that we have 
omputed the ap-proximate solution yk+1 and the residual ve
tor r(y)k+1 using the re
ursionsyk+1 = yk + �kp(y)k ;(5) r(y)k+1 = r(y)k + �kBTA�1Bp(y)k(6)with r(y)0 = �BTA�1(f �By0). We distinguish between the following three mathemat-i
ally equivalent ba
k-substitution formulasxk+1 = xk + �k(�A�1Bp(y)k );(7) xk+1 = A�1(f �Byk+1);(8) xk+1 = xk +A�1(f �Axk �Byk+1):(9)These s
hemes have been used and studied in the 
ontext of many appli
ations, in-
luding various 
lassi
al Uzawa algorithms, two-level pressure 
orre
tion approa
h orinner-outer iteration method for solving (2). Be
ause the solves with matrix A in (7)-(9) are expensive, these systems are in pra
ti
e solved only approximately. Our analysisis based on the assumption that every solution of a symmetri
 positive de�nite systemwith the matrix A is repla
ed by an approximate solution produ
ed by an arbitrarymethod. The resulting ve
tor is then interpreted as an exa
t solution of the system withthe same right-hand side ve
tor but with a perturbed matrix A+�A. We require thatthe relative norm of the perturbation is bounded as k�Ak � �kAk, where � representsa ba
kward error asso
iated with the 
omputed solution ve
tor, and we assume thatthe perturbation �A does not ex
eed the limitation given by the distan
e of A to thenearest singular matrix and put restri
tion in the form ��(A)� 1.Using (5) and (6), we 
an estimate the gap between the true residual in the outeriteration, i.e., the residual in the S
hur 
omplement system (3), and the updated residualr(y)k as k �BTA�1f +BTA�1B�yk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk)where �Yk is de�ned as a maximum norm over all 
omputed approximate solutions �Yk �maxi=0;:::;k k�yik. While the updated residual �r(y)k 
onverges to zero, the true residualstagnates at the level proportional to � . On the other hand, the a

ura
y measured bythe residuals f �A�xk �B�yk and �BT �xk in (2) depends on the parti
ular 
hoi
e of theba
k-substitution formula. No matter how we 
ompute the approximations �xk and �yk,we have(10) �BTA�1f +BTA�1B�yk = �BT �xk �BTA�1(f �A�xk �B�yk)whi
h gives the mutual relation between the residual �BTA�1f + BTA�1B�yk in theS
hur 
omplement system (3) and the residuals f � A�xk � B�yk and �BT �xk asso
iatedwith the saddle point system (2). Sin
e k �BTA�1f +BTA�1B�ykk is ultimately O(� ),it is 
lear from (10) that both f �A�xk�B�yk and �BT �xk 
annot be proportional to theroundo� unit u.



12 CHAPTER 2. MAIN RESULTS OF THE THESISIn the update s
heme (7), the true residual f �A�xk �B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A)(kfk + kBk�Yk);and the gap between the residuals �BT �xk and �r(y)k 
an be estimated ask �BT �xk � �r(y)k k � O(u)�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk):Hen
e this s
heme guarantees that the residual �BT �xk will ultimately rea
h the levelof O(u) independently on the fa
t that the inner systems are solved with the relaxeda

ura
y given by the parameter � .In the dire
t substitution s
heme (8), the true residual f�A�xk�B�yk satis�es the boundkf �A�xk �B�ykk � O(� )�(A)1� ��(A) (kfk + kBkk�ykk);and the gap between the residuals �BT �xk and �r(y)k 
an be bounded as followsk �BT �xk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk):In this most straightforward s
heme, both residuals thus stagnate ultimately on the levelof O(� ).In the 
orre
ted dire
t substitution s
heme (9), the true residual f �A�xk�B�yk satis�eskf �A�xk �B�ykk � O(u)�(A)1� ��(A) (kfk + kBk�Y k0k )for all steps k starting from some k0, where �Y k0k � maxi=k0;:::;k k�yik. The gap between�BT �xk and �r(y)k 
an be estimated as followsk �BT �xk � �r(y)k k � O(� )�(A)1� ��(A)kA�1kkBk(kfk + kBk�Yk):The 
onvergen
e of kf � A�xk � B�ykk is driven by the stationary iteration with thenorm of the iteration matrix bounded by O(� )�(A)=(1 � ��(A)) and after some initialstage the residual 
onverges ultimately to the level of O(u). However, the se
ond blo
kequation of (2) is satis�ed to the a

ura
y given by � .Independently of the 
hosen ba
k-substitution formula, the ultimate levels of error normskx� �xkk and ky � �ykk are O(� ) as indi
ated by the estimateskx� �xkk � 
1kf �A�xk �B�ykk+ 
2k �BT �xkk;ky � �ykk � 
2kf �A�xk �B�ykk+ 
3k �BT �xkk;where 
1 � ��1min(A), 
2 � ��1min(B) and 
3 � ��1min(BTA�1B) are 
onstants independentof the iteration step k, and depend on the 
onditioning of the blo
ks A andB. In pra
ti
e,these blo
ks 
an be ill-
onditioned and in su
h 
ases the 
onstants 
1, 
2 and 
3 mayplay an important role.
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1.2. Null-space projection method. The null-spa
e proje
tion method is basedon the proje
tion of the �rst blo
k equation in (2) onto the null-spa
e N(BT ) and ontoits orthogonal 
omplement, the range R(B). Denoting by � the orthogonal proje
toronto R(B), we �rst 
ompute the unknown x 2 N(BT ) from the proje
ted system(11) (I ��)A(I ��)x = (I ��)fwith the symmetri
 positive semi-de�nite matrix (I��)A(I��), and then the unknowny is obtained as y = By(f �Ax) by solving the least squares problemkf �Ax�Byk = minv2Rm kf �Ax�Bvk:We dis
uss algorithms whi
h 
ompute simultaneously approximations xk and yk bysolving iteratively the proje
ted system (11) and minimize the residual norm f �Axk�Byk, i.e., yk+1 is given by yk+1 = By(f � Axk+1). We assume that the approximatesolution xk+1 and the residual ve
tor r(x)k+1 are 
omputed usingxk+1 = xk + �kp(x)k ;(12) r(x)k+1 = r(x)k � �kAp(x)k �Bp(y)k ;(13)where r(x)0 = By(f �Ax0). The ve
tors x0 and p(x)k belong to N(BT ) and p(y)k solves theproblem Bp(y)k � r(x)k � �kAp(x)k minimizing the residualkr(x)k � �kAp(x)k �Bp(y)k k = minp2Rm kr(x)k � �kAp(x)k �Bpk:This residual update strategy was proposed in [22℄ (see also [10, 9℄) and it is used toredu
e the roundo� errors in the proje
tion onto N(BT ). Again we distinguish betweenthree ba
k-substitution formulasyk+1 = yk + p(y)k ; p(y)k = By(r(x)k � �kAp(x)k );(14) yk+1 = By(f �Axk+1);(15) yk+1 = yk +By(f �Axk+1 �Byk):(16)The pseudoinverse By in (14)-(16) is applied by solving the least squares with the matrixB. These problems are solved inexa
tly. In our 
onsiderations we assume that the
omputed solution �v of a least squares problem Bv � 
 is an exa
t solution of a perturbedproblem (B +�B)�v � 
+�
 with k�Bk=kBk � � and k�
k=k
k � � . The parameter� again represents the measure for inexa
t solution of the least squares with B anda
tually it des
ribes the ba
kward error. This 
an be a
hieved in many di�erent ways
onsidering the inner iteration loop solving the asso
iated system of normal equations,the augmented system formulation or solving it dire
tly. We assume ��(B) � 1 whi
hguarantees B +�B to have a full 
olumn rank.



14 CHAPTER 2. MAIN RESULTS OF THE THESISUsing (12) and (13), we 
an estimate the gap between the true residual in the outeriteration, i.e., in the proje
ted system (11), and the updated residual �r(x)k ask(I ��)f � (I ��)A(I ��)�xk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk + kAk �Xk):where �Xk � maxi=0;:::;k k�xik. While the updated residual �r(x)k 
onverges to zero, the trueresidual stagnates at the level proportional to � independently on the ba
k-substitutionformula. Moreover, we ideally have (B+�B)T x̂ = 0 whi
h implies k�BT x̂k � �kBkkx̂k.Therefore we 
an expe
t that also the residual �BT �xk asso
iated with the 
omputedapproximate solution �xk will be proportional to � . Su
h analysis is dependent on the
hoi
e of a parti
ular method with the re
urren
es (12) and (13) and we do not giveit here. In a

ordan
e with [25℄ it seems reasonable that the bound for �BT �xk isproportional to the fa
tor �Xk, i.e.,k �BT �xkk � O(� )kBk1� ��(B) �Xk:It is 
lear that no matter how we 
ompute �xk and �yk we have the following relationbetween (I ��)f � (I ��)A(I ��)�xk, f �A�xk �B�yk and �BT �xk(17) (I ��)f � (I ��)A(I ��)�xk = (I ��)(f �A�xk �B�yk) + (I ��)A��xk:Owing to our assumption, the norm of �BT �xk is �nally on the level of O(� ). We havethat k(I � �)f � (I � �)A(I � �)�xkk is ultimately O(� ) and, on the other hand, thenorm of the proje
tion of f � A�xk � B�yk onto N(BT ) rea
hes the level of O(u). It isnot 
lear from (17) whether the whole residual f � A�xk � B�yk will be ultimately O(� )or O(u). It strongly depends on the ba
k-substitution s
heme.In the updated s
heme (14), the gap between the residuals f �A�xk �B�yk and �r(x)k 
anbe bounded as kf �A�xk �B�yk � �r(x)k k � O(u)�(B)1� ��(B) (kfk+ kAk �Xk);Thus using the simple update formula makes the �rst 
omponent of the residual in (2)stagnating ultimately on the level proportional to unit roundo�.In the dire
t substitution s
heme (15), the gap between the residuals f�A�xk�B�yk and�r(x)k 
an be bounded askf �A�xk �B�yk � (I ��)�r(x)k k � O(� )�(B)1� ��(B) (kfk+ kAkk�xkk)+ O(u)�(B)1� ��(B)(kfk + kAk �Xk):Comparing this s
heme with the generi
 update formula, the �rst 
omponent of theresidual in (2) ultimately stagnates on the level proportional to the parameter � .



2. NUMERICAL STABILITY OF SOME KRYLOV SUBSPACE METHODS 15In the 
orre
ted dire
t substitution s
heme (16), the gap between the residuals f�A�xk�B�yk and �r(x)k 
an be bounded askf �A�xk �B�yk � (I ��)�r(x)k k � O(u)�(B)1� ��(B)(kfk + kAk �Xk)for all k large enough. This s
heme gives a similar a

ura
y as the generi
 update butit 
osts one additional solution of the least squares problem with B.For the error norms, we have the same results as in the 
ase of the S
hur 
omplementmethod { they do not depend on the ba
k-substitution s
heme and ultimately stagnateon the level proportional to � .
2. Numerical stability of some residual minimizing iterative methodsIn this se
tion we summarize the results of the se
ond part of the thesis. We 
onsider
ertain Krylov subspa
e methods for solving a system of linear algebrai
 equations(18) Ax = b; A 2 R

N�N ; b 2 R
N ;where A is a large and sparse nonsingular matrix that is, in general, nonsymmetri
.A Krylov subspa
e method builds a sequen
e of iterates xn (n = 0; 1; 2; : : :) su
h thatxn 2 x0 + Kn(A; r0), where Kn(A; r0) � spanfr0; Ar0; : : : ; An�1r0g is the nth Krylovsubspa
e generated by the matrix A from the residual r0 � b � Ax0 that 
orrespondsto the initial guess x0. Many approa
hes for de�ning su
h approximations xn havebeen proposed, see, e.g., the books by Greenbaum [25℄, Meurant [43℄, and Saad [52℄.In parti
ular, due to their smooth 
onvergen
e behavior, minimum residual methodssatisfying(19) krnk = min~x2x0+Kn(A;r0) kb�A~xk; rn � b�Axn;are widely used, e.g., the GMRES algorithm of Saad and S
hultz [53℄. In [11, 26, 48℄it was shown that this \
lassi
al" version of the GMRES method is ba
kward stableprovided that the Arnoldi pro
ess is implemented using the modi�ed Gram-S
hmidtalgorithm or Householder re
e
tions.Here we deal with a di�erent approa
h proposed by Walker and Zhou [65℄, who 
alledit the Simpler GMRES method. The minimum residual property (19) is equivalent tothe orthogonality 
ondition rn ? AKn(A; r0);where ? is the orthogonality relation indu
ed by the standard Eu
lidean inner produ
th�; �i. We propose a generalization of the Simpler GMRES method that makes use of anynested sequen
e of matri
es Zn�1 � [z1; : : : ; zn�1℄ su
h that the 
olumns of [q1; Zn�1℄form a basis of Kn(A; r0). We may assume that the 
olumns zk of Zn�1 have unitlength and need not be mutually orthogonal. The orthonormal basis Vn of AKn(A; r0)is obtained from the QR fa
torization of the image of [q1; Zn�1℄:(20) A[q1; Zn�1℄ = VnUn:
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e rn 2 r0 + AKn(A; r0) = r0 +R(Vn) and rn ? R(Vn), we 
an obtain the residualfrom rn = (I � VnV Tn )r0. To 
ompute it we apply the modi�ed Gram-S
hmidt method,whi
h leads to the re
ursion(21) rn = rn�1 � �nvn; �n � hrn�1; vni:Sin
e the 
olumns of [q1; Zn�1℄ are a basis of Kn(A; r0), we 
an represent xn in the form(22) xn = x0 + [q1; Zn�1℄tn:Due to the minimum residual property, we have rn ? R(Vn), and thus simply(23) Untn = V Tn r0 = [�1; : : : ; �n℄T :Hen
e, on
e the residual norm is small enough, we 
an solve this triangular system and
ompute xn = x0 + [q1; Zn�1℄tn. We 
all this general approa
h the simpler approa
h.It in
ludes, as a spe
ial 
ase, Simpler GMRES, where Zn�1 � Vn�1. We will also beinterested in the 
ase of the residual basis [q1; Zn�1℄ = [ r0kr0k ; : : : ; rn�1krn�1k ℄, whi
h we will
all SGMRES/RB, where \RB" refers to \residual basis".Re
ursion (21) reveals the 
onne
tion between the simpler approa
h and yet anotherminimum residual approa
h. Let us set pn � A�1vn, Pn � [p1; : : : ; pn℄. Then, left-multiplying (21) by A�1 yields(24) xn = xn�1 + �npn;Now, note that left-multiplying (20) by A�1 yields(25) [q1; Zn�1℄ = PnUn:If Un is known from (20), a re
ursion for pn 
an be extra
ted from this formula. Wewill use here the terminology update approa
h for this 
ase and, more exa
tly, re�nedORTHODIR for the parti
ular 
ase with Zn�1 � Vn�1, sin
e it is a re�ned version ofthe residual norm minimizing ORTHODIR algorithm [14, 70℄. Likewise the 
ase withZn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whi
h 
an be viewed as a re�ned version of the ORTHOMINalgorithm [64, 70℄ (or the GCR method of Elman [13, 12℄) and is identi
al to theGMRESR method without pre
onditioning.
2.1. The maximum attainable accuracy. We analyze the numeri
al stability ofthe simpler and update approa
hes, and assume that only the 
omputations performedin (20), (23) and (25) are a�e
ted by rounding errors and that the 
omputed Q-fa
torin the QR fa
torization (20) is 
lose to an orthonormal matrix and has beed 
omputedin a ba
kward stable way. Hen
e we assume that the 
omputed (orthogonal) fa
tor Vnand the upper triangular fa
tor Un in the QR fa
torization (20) satisfy(26) A[q1; Zn�1℄ = VnUn + Fn; kFnk � 
ukAkk[q1; Zn�1℄k;and kVn � V̂nk � 
u, where V̂n is the nearest orthonormal matrix satisfying V̂ Tn V̂n = I.For simpli
ity, we do not distinguish between Vn and V̂n and assume that Vn is exa
tly
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h, we have from [66, 32℄ for the 
omputed solutiont̂n of (23) that(27) (Un +�Un)t̂n = Dne; j�Unj � 
ujUnj;where the absolute value and the inequality are understood 
omponent-wise. The ap-proximation x̂n to x is then 
omputed as(28) x̂n = x0 + [q1; Zn�1℄t̂n:In a

ordan
e with (26) we assume in the update approa
h that in �nite pre
isionarithmeti
 the 
omputed dire
tion ve
tors satisfy(29) [q1; Zn�1℄ = PnUn +Gn; kGnk � 
ukPnkkUnk:As in (24) we 
ompute then the approximate solution x̂n as(30) x̂n = x̂n�1 + �npn:The 
ru
ial quantity for the analysis of the maximum attainable a

ura
y is the gapbetween the true residual b � Ax̂n of the 
omputed approximation and the updatedresidual rn obtained from the update formula (21) des
ribing the proje
tion of the pre-vious residual; see [25, 29℄. In fa
t, on
e the true residual be
omes negligible 
omparedto the true one, the gap equals the true residual divided by kAkkx̂nk, whi
h therefore
an be thought of as the ba
kward error of the ultimate approximate solution x̂n. In thesimpler approa
h, the gap between the true residual b� Ax̂n and the updated residualrn satis�es kb�Ax̂n � rnkkAkkx̂nk � 
u�([q1; Zn�1℄)�1 + kx0kkx̂nk� ;while in the update approa
h, we havekb�Ax̂n � rnkkAkkx̂nk � 
u�(A)�([q1; Zn�1℄)�1 + kx0kkx̂nk� ;provided that 1� 
u�(A)�([q1; Zn�1℄) > 0. The bound on the ultimate ba
kward errorfor the update approa
h is worse that the one for the simpler approa
h. We see that forthe simpler approa
h the normwise ba
kward error is on the order of the roundo� unit,whereas for the update approa
h we have an upper bound proportional to the 
onditionnumber of A. Su
h a di�eren
e is hard to be seen in pra
ti
e, but a model example 
anbe 
onstru
ted, where this di�eren
e is 
learly visible.In 
ontrast to the di�eren
e in the attainable a

ura
y measured by the ba
kward errors,it appears that the update approa
h leads to an approximate solution on essentially thesame a

ura
y level in the error as the simpler approa
h, as indi
ated by the estimatekxn � x̂nkkxk � 
u�(A)�([q1; Zn�1℄)kx̂nk+ kx0kkxk ;whi
h holds for both approa
hes. A similar phenomenon was also observed by Sleijpen,van der Vorst and Modersitzki [55℄ in the symmetri
 
ase for GMRES and MINRES.
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2.2. Choice of the basis. First, we 
hoose Zn�1 = Vn�1, whi
h leads to the Sim-pler GMRES method of Walker and Zhou [65℄ and to the re�ned version of ORTHODIRby Young and Jea [70℄, respe
tively. Hen
e, we 
hoose fq1; v1; : : : ; vn�1g as a basis ofKn(A; r0). If r0 62 AKn(A; r0), these ve
tors are linearly independent and hen
e form abasis. Note that if r0 2 AKn(A; r0), then the 
ondition (19) yields xn = A�1b, rn = 0,and any implementation of the minimum residual method will terminate. As observedby Liesen, Rozlo�zn��k and Strako�s [39℄, this 
hoi
e of the basis is not very suitable fromthe numeri
al stability point of view. This short
oming is re
e
ted by the unboundedgrowth of the 
ondition number of [q1; Vn�1℄ expressed by the two-sided inequalitieskr0kkrn�1k � �([q1; Vn�1℄) � 2 kr0kkrn�1k :The 
onditioning of [q1; Vn�1℄ is thus related to the 
onvergen
e of the method; in par-ti
ular, it is inversely proportional to the a
tual relative norm of the residual. Hen
e, ifthe residual is small enough, Simpler GMRES and re�ned ORTHODIR behave unstably.Se
ond, we 
hoose Zn�1 = [ r1kr1k ; : : : ; rn�1krn�1k ℄, whi
h leads to SGMRES/RB (whi
h wepropose as a more stable 
ounterpart of Simpler GMRES) and to the re�ned versionof ORTHOMIN by Vinsome [64℄ known also under the name GCR [13, 12℄. We have[q1; Zn�1℄ = RnB�1n , where Bn � diag(kr0k; : : : ; krn�1k), i.e., we 
hoose s
aled resid-uals r0; : : : ; rn�1 as the basis of Kn(A; r0). The linear independen
e of the residual isguaranteed by the stri
tly monotonous 
onvergen
e of their 2-norms and the 
onditionthat the exa
t solution was not rea
hed yet, i.e., r0 62 AKn(A; r0). Moreover, whenthe minimum residual method does not stagnate, the residuals form a well-
onditionedbasis, as indi
ated by the estimate1 � �(RnB�1n ) � pn
n; 
n �vuut1 + n�1Xk=1 krk�1k2 + krkk2krk�1k2 � krkk2 :We de�ne the quantity 
n as the stagnation fa
tor. The 
onditioning of RnB�1n isthus related to the 
onvergen
e of the method, but in 
ontrast to the 
onditioning of[q1; Vn�1℄, it is related to the intermediate de
rease of the residual norms, not to theresidual de
rease with respe
t to the initial residual.



CHAPTER 3
Conclusions and open questionsIn this thesis we studied the numeri
al behavior of several iterative methods for thesolution of systems of linear algebrai
 equations. In the �rst part we looked at thenumeri
al behavior of 
ertain inexa
t saddle point solvers. In parti
ular, for severalmathemati
ally equivalent implementations, we studied the in
uen
e of inexa
t solutionof inner systems and estimate their maximum attainable a

ura
y. When 
onsideringthe outer iteration pro
ess, our analysis lead to results similar to ones whi
h 
an beobtained assuming exa
t arithmeti
. The situation was di�erent, when we looked atthe residuals in the saddle point system. We showed that some implementations leadultimately to residuals on the level of roundo� unit independently on the fa
t that theinner systems were solved inexa
tly. Indeed, our results 
on�rm that the generi
 anda
tually the 
heapest implementations deliver the approximate solutions, whi
h satisfyeither the se
ond or the �rst blo
k equation to the working a

ura
y. In addition, theimplementations with 
orre
ted dire
t substitution are also very attra
tive. We gavea theoreti
al explanation for the behavior whi
h was probably observed or is alreadyta
itly known. The implementations that we point out as optimal are a
tually those,whi
h are widely used and suggested in appli
ations. It appears that, when measured interms of the errors, the maximum attainable a

ura
y level is similar for all 
onsideredimplementations and it is proportional to the ba
kward error toleran
e of inner systems.In the se
ond part we studied the numeri
al behavior of several minimum residual meth-ods mathemati
ally equivalent to GMRES. Two general formulations were analyzed: thesimpler approa
h that does not require an upper Hessenberg fa
torization and the updateapproa
h whi
h is based on generating a sequen
e of appropriately 
omputed dire
tionve
tors. It was shown that for the simpler approa
h our analysis leads to an upperbound for the ba
kward error proportional to the roundo� unit, whereas for the updateapproa
h the same quantity 
an be bounded by a term proportional to the 
onditionnumber of A. Although our analysis suggests that there maybe a di�eren
e betweenboth approa
hes up to the order of �(A), in pra
ti
e they behave very similarly and itis very diÆ
ult to �nd an example with a signi�
ant di�eren
e in the limiting a

ura
y.Moreover, when looking at the errors, we note that both approa
hes lead essentially tothe same a

ura
y of the 
omputed approximate solutions.We indi
ated that the 
hoi
e of the basis [q1; Zn�1℄ is the most important issue for thestability of the 
onsidered s
hemes. Our analysis supports the well-known fa
t that, evenwhen implemented with the best possible orthogonalization te
hniques, Simpler GMRESand ORTHODIR are inherently less stable due to the 
hoi
e [q1; Zn�1℄ = [q1; Vn�1℄.19



20 CHAPTER 3. CONCLUSIONS AND OPEN QUESTIONSThe situation be
omes signi�
antly better, when we use the residual basis [q1; Zn�1℄ =[ r0kr0k ; : : : ; rn�1krn�1k ℄. This 
hoi
e leads to the popular GCR, ORTHOMIN and GMRESRmethods, whi
h are widely used in appli
ations. Assuming some reasonable residualde
rease (whi
h happens almost always in �nite pre
ision arithmeti
), we showed thatthis s
heme is quite eÆ
ient and proposed a 
onditionally ba
kward stable variant (
alledSGMRES/RB here). Our theoreti
al results in a sense justify the use of the GCRmethodin pra
ti
al 
omputations.There are several open problems 
onne
ted to the topi
 of this thesis.
Various stopping criteria for inner systems. The analysis of segregated saddlepoint solvers is based on the ba
kward error stopping 
riterion in inner systems. It 
ouldbe interesting to 
ompare other stopping 
riteria based, e.g., on the relative residualsor estimates of energy errors in the S
hur 
omplement method. The relation betweenthe A-norm of x� xk and the BTA�1B-norm of y � yk 
an lead to a stopping 
riterionbased on the energy norm of x� xk. However, it is not 
ompletely 
lear how to do this,when the systems with A are not solved exa
tly.
Corrected substitution in stationary iterative methods. We saw that for theS
hur 
omplement redu
tion and null-spa
e proje
tion methods, it is more preferable toupdate the approximation xk+1 using the 
orre
ted dire
t substitution than to 
omputeit dire
tly. Analogous results hold also for stationary iterative methods. Consider thesystem Ax = b with a nonsingular matrix A and its splitting A = M � N , where Mis also nonsingular. A stationary iterative method then generates the approximationsto x satisfying Mxk+1 = Nxk + b starting from some x0. Higham and Knight [33℄analyzed this implementation in �nite pre
ision arithmeti
, and they showed that thelimiting a

ura
y depends on the maximum relative norm of the approximate solutions�xi (i = 0; : : : ; k). However, it is mu
h more bene�
ial, in su
h a 
ase, rather than
ompute xk+1 = M�1(Nxk + b), to use the \
orre
ted" formula xk+1 = xk +M�1rk,where rk = b � Axk. The �nal level of the residual f � A�xk � B�yk in the S
hur
omplement redu
tion method with the 
orre
ted dire
t substitution does not dependon the maximum norm of the iterates during the whole iteration pro
ess but only onthose in a few last iterations. The similar observation 
an be made also in the 
aseof the \
orre
ted" implementation of the stationary iteration, and the idea 
an be alsoextended to two-stage iterative methods, e.g., when applying the SIMPLE method forthe solution of 
uid 
ow problems (see, e.g., [50℄).
Backward error analysis of segregated methods. At the end of the �rst partof the thesis, we interpret the inexa
t solution 
omputed with the S
hur 
omplementredu
tion method (using the generi
 update) as an exa
t solution of the saddle pointproblem with a perturbed upper-left matrix blo
k. The similar ba
kward error analysisshould be performed also for other implementations of the S
hur 
omplement redu
tion



21method and for the null-spa
e proje
tion method. Moreover, the analysis of the null-spa
e proje
tion should 
onsider also a parti
ular proje
tion method for 
omputing thedire
tion ve
tors.
Preconditioned residual basis. In the analysis of the minimal residual Krylovsubspa
e methods, we did not 
onsider the issue of pre
onditioning or, we assume, thatthe system Ax = b is already pre
onditioned. It does not make mu
h sense to pre
on-dition the methods using the basis [q1; Vn�1℄ su
h as Simpler GMRES or ORTHODIRdue to their inherent instability. One 
an restart the method to over
ome this problem,but note that the restart is ne
essary when the method be
omes unstable, i.e., whenit 
onverges fast! It seems reasonable to use (�xed or 
exible) pre
onditioning in the
ase of the residual basis (the pre
onditioned SGMRES/RB and GCR). It is sometimesobserved that the pre
onditioned residual basis of GCR (i.e., GMRESR [63℄) is morepreferable than, e.g., pre
onditioned GMRES (with a �xed pre
onditioner) or 
exibleGMRES [51℄, whi
h use the pre
onditioned orthonormal basis of Kn(A; r0). Moreover,faster 
onvergen
e 
ould be observed when using pre
onditioned residuals. This issueneeds to be analyzed further.
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