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Overview

This dissertation deals with the optimal positioning control of robot manipu-
lators that is one of the sub-branches of motion control and trajectory plan-
ning. In fact, our main objective is to present the new method(s) to control
a robotic system in such a way that some performance criterion is optimized.
There is a wide range of performance criteria which can be considered like
energy consumption, the required time to perform some desired task by the
robot or a compound criterion including both energy and time. In this thesis,
we present two new methods so that the first one solves unconstrained global
optimal control problem (OCP) and second one solves the constrained OCP
of robot manipulators. The first method presents an optimal feedback control
system and obtains a global solution for the considered unconstrained OCP
in a completely innovative manner. In the second proposed method which is
actually a compound method, the optimal trajectories are computed by use
of an iterative linearization method so that in each iterate a parametric op-
timization method is applied to obtain the optimal trajectories. It is proved
that after a finite number of iterations, the sequence of optimal trajectories
converge to the optimal trajectories of original nonlinear (robotic) system.

Another subject addressed in this thesis, is robot identification. For de-
signing an optimal control scheme, we require an exact model of the robot.
In this thesis a comprehensive procedure of identification experiment for a
KUKA robot available in robotic laboratory of Mechatronic faculty of TUL
is presented.

This dissertation has six chapters as follows: chapter 1 is an introduc-
tion to robot kinematics, dynamics and identification, as well as the OCP.
Chapter 2 deals with the subjects such as robot kinematics, dynamics and
identification, in detail. In this chapter the results of KUKA robot identifi-
cation is presented. Chapter 3 addresses the subjects relating to the OCP
formulation and the different methods to solve this problem. In chapter 4, we
present our first proposed method to solve the unconstrained OCP of robot
manipulators. Then, the proposed method to solve the constrained OCP of
robot manipulators is dealt with in chapter 5. Eventually, in chapter 6 the
concluding remarks are presented.
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1 Introduction

Modern industrial robots are electro-mechanical systems whose history dates back a few recent decades.
The first industrial robot was manufactured by George Charles Devol, in 1954 called Unimation. After
that various universities and companies designed and built different industrial robots such as Puma 560,
Stanford, SCARA, etc. Like human body, the members of each open chain manipulator include: waist,
shoulder, elbow, wrist and end effector (hand). In fact, these are the joints of the robot by which the robot
links are connected to each other.

With growing applications of robot manipulators in industrial factories, one of the key features which
has been considered is to increase productivity with low energy consumption as much as possible. One of
the possible ways is to design a controller for the robot manipulators which perform the respective task
in minimum time and minimum energy consumption. Hence, designing such controllers is the goal in the
optimal control technique and in this thesis is attempted to propose new method(s) for achieving this goal.

2 Optimal Control of Robot Manipulators

Usually researches face with some difficulties for solving optimal control problem (OCP) of robot manipu-
lators. The major problem is that the robots have a highly nonlinear and coupled dynamics which anyone
who derived these dynamics may realize the complexity of these equations which is to ever for a 6 degrees
of freedom (DOF) manipulator. In general, there are three main approaches to solve the (continuous or
discrete) OCP of nonlinear dynamical systems [10]:

• Dynamic programming,

• Indirect methods (variational approaches),

• Direct methods.

In the case of robot manipulators, firstly the time-OCP of robot manipulators was solved by indirect
methods. In fact, this problem was seriously considered by Bobrow in his Ph.D dissertation [6]. He proposed
a new method in which a modified Pontryagin’s minimum principle is used to calculate the optimal control
torque of each joint of a robot manipulator. After this proposed method, some other researches were presented
by which a set of improvements were applied to the Bobrow’s first work [5, 27], for instance by considering
the singularity problem appeared in OCP [25, 28]. Some other studies added a energy term to the cost
function [26] and also actuator dynamics [24].

Dynamic programming method also was employed to obtain the minimum-time optimal trajectories
[29, 3, 11]. In [29], the Bobrow’s method was used to solve the OCP of robot manipulators, but for computing
the optimal controls, a dynamic programming algorithm has been developed to derive the reduced set of
second order differential equations in terms of path parameter.

Although two above methods have been used successfully in many applications, but they have been
replaced by direct methods in recent years. The basic idea of this method, in the case of robot manipulators,
is that the joint trajectories are approximated by a parametric function such as spline functions and then
using a nonlinear programming, the optimal values of the parameters in approximating function are achieved.
One of the main advantages to this approximations is that usually the resulted parametric optimization
problem has a feasible solution. Many researchers presented different approaches to generate the optimal
joint trajectories. Among these works, polynomial cubic spline functions and B-splines have been used in
many studies [4, 31, 32, 33, 18, 14]. In [4], B-spline functions were used to parameterize the joint motions and
derive a general optimization technique for robots using Denavit-Hartenberg parameters of the robot and the
full robot dynamics. In [31] a cubic spline trajectory is used to converting the OCP into a finite dimensional
optimization problem by considering maximum values of velocity, acceleration and jerk for all robot joints.
Point to point trajectory parametrization was performed in [32] by means of cubic B-splines. [33] proposes a
method to obtain a global solution to OCP of robot manipulators. Incorporating both acceleration and jerk
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as the objectives is considered in [18]. Also in [14] an efficient algorithm is proposed to solve the OCP by
using polynomial cubic spline functions. There is also another sub-part of the direct methods called shooting
methods. These kinds of methods, which include single shooting, collocation and multiple shooting methods,
use a constant piecewise function to parametrize the control inputs (robot joint’s torques and forces) of the
system. These methods have been considered in [10, 7], in detail.

In most studies mentioned above, the obtained optimal solution is a local one whereas a small number
of researches are found to obtain the global optimal solution to the OCP of robot manipulators. In the our
first proposed method, we consider this subject so that it yields a global optimal solution to the considered
unconstrained OCP. In the second proposed method, we present a combined optimal control method through
which the constrained OCP of robot manipulators is solved. In this approach it is attempted to dominate
the complexity of robot dynamics and solve the constrained OCP of robot manipulators during some stages.

3 Objectives of the Dissertation

In this study, the main objective is to solve the optimal control problem (or optimal dynamic motion planning)
of open-chain robot manipulators. In doing so, we first require a precise dynamic model of the considered
system. Thus, in the case of robot manipulators, we developed an identification experiment to estimate the
dynamic and friction parameters of the our case study, i.e. a KUKA robot available in robotic laboratory
of Mechatronic faculty of TUL. As shown in Figure 1, it is a 6 degrees of freedom industrial robot for which
we assume the last three joints are fixed in their home positions.

Figure 1: KUKA IR 364/10-VK 10 Robot Manipulator

Therefore, the objectives considered in this dissertation can be summarized as follows:

1. The elementary objective is to obtain a kinematic and dynamic models of the robot in closed-form
using modified Denavit-Hartenberg notation and recursive Newton-Euler formulation, respectively.

2. The second objective is to develop a well-designed identification procedure to estimate the dynamic
and friction parameters of the robot such as mass, inertial parameters and location of mass center of
each link of the robot, as well as Coulomb and viscous friction parameters of each robot joint.

3. The third objective is to present an approach to solve the unconstrained OCP of robot manipulators.

4. The fourth objective is to propose a method to solve the optimal dynamic point to point control
problem of robot manipulators.
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4 Kinematic and Dynamic Modeling of Serial Industrial Robots

4.1 Kinematic Model of the Robot

Let us consider an n-axes robot manipulator, as shown in Figure 2. Then, a coordinate frame is adopted to
each link so that the position and orientation of the last link , i.e., pose of frame {n}, relative to base link
frame {0} is described by the following coordinate transformation:

0Tn =0A1
1A2 . . .

n−1An (1)

where i−1Ai denotes the homogeneous transformation frames i relative to frame i− 1.

Figure 2: Robot manipulator

In order to describe the relationship between coordinate frames of a robot we can use either Denavit-
Hartenberg (DH) notation [9] or modified Denavit-Hartenberg (MDH) one [19] which we use the latter to
obtain the kinematic model of the KUKA robot. Then according to MDH, the transformation matrix i−1Ai
describing frame i w.r.t i− 1 is given as follows:

i−1Ai =


Cqi −Sqi 0 di

CαiSqi CαiCqi −Sαi −riSαi
SαiSqi SαiCqi Cαi riCαi

0 0 0 1

 (2)

where S and C stand for functions “sin” and “cos” as well as di, αi, qi and ri are MDH parameters of the
link i of the robot.

4.2 Dynamic Model of the Robot

In order to derive dynamic equations of motion of a robot arm, usually three conventional formulation
approaches can be used: Euler-Lagrange (EL) [20], recursive Newton-Euler (RNE) [23] and product of
exponential (POE) [22] formulations. Using each of these methods, the dynamic model of a robot manipulator
can be expressed in matrix form

M (q (t)) q̈ (t) + V (q (t) , q̇ (t)) + G (q (t)) + F (q̇) = τ (t) (3)

where q (t) , q̇ (t),q̈ (t), τ (t) are n × 1 vectors of joint variables, velocities, accelerations and torques, re-
spectively. Moreover, M (q) is the n× n symmetric positive definite manipulator inertia matrix, V (q, q̇) is
the n-vector containing centripetal and Coriolis terms and G (q (t)) is gravity term and F (q̇) addresses the
friction torque.

In order to obtain the dynamic equations of the robot, we developed a Robot Dynamics Modeler (RDM)
GUI , as shown in Figure 3, by which the user can derive the dynamics equations of an open chain robot
manipulator.
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Figure 3: Robot Dynamics Modeler (RDM) GUI

5 Robot Identification

Robot identification procedure deals with the estimation of robot dynamic and friction parameters by means
of commanding the robot with a particular trajectory, called excitation trajectory, and then measure the
position and torque of each joint. These data are used in one of the following methods: Least square (LS)
[21], weighted least square (WLS) [15, 13], Extended Kalman filter (EKF) [16], maximum likelihood or batch
adaptive techniques, to estimate the dynamic and friction parameters of the robot. Eventually to verify the
validation of estimated model, a new experiment is developed through which the robot is commanded to
move along some different trajectory and then the torques produced by the robot controller are compared
by those produced by the estimated model. This step is known as identification validation.

From identification point of view, there is a helpful property in the robot dynamic equations (3) which
are linear in terms of dynamic and friction parameters of the robot, namely

τ = τd + τf = Y (q, q̇, q̈) · θd + F (q̇) · θf (4)

where

θd,i =
[
Ixxi, Ixyi, Ixzi, Iyyi, Iyzi, Izzi,mixi,miyi,mizi,mi, Iai

]T
θf,i = [ Fci, Fvi]

T
(5)

The friction parameters can be estimated through a separate experiment in which a constant speed
motion is used as excitation trajectory and then the parameters in θf are estimated. On the other hand,
only some of the elements in the vector θd have really effect on the dynamic model of the robot. The set of
such parameters are called base parameters set (BPS) which can be obtained by analytical or numerical
approaches according to rules given in [12]. For KUKA robot, the number of BPSs together with friction
parameters is 21. Furthermore, notice that the accuracy of the result of identification experiment is very
dependent on excitation trajectory. It is a trajectory which “excites” all dynamics of the robot as well as,
the sensitivity of the weighted least square method, which is used to estimate the base dynamic parameters,
with respect to noise and model errors can be minimized along this trajectory [1, 8]. Excitation trajectory
for a robot identification can be obtained by solving an optimization problem whose cost function is the
condition number of robot observation matrix. Figure 4 shows the excitation trajectory for first three joints
of KUKA robot. This robot has a SIMOTION control system (SCS) from the products of Siemens Industrial
Automation which controls the robot. After calculating the excitation trajectories, the robot is commanded
through SCS to move along these trajectories. The SCS software has measurement part which enables one to
measure the desired signals. The SCS provides us the desired data in .xls format which is suitable to import
to MATLAB for processing. Next, the data imported into MATLAB are used to remove their outliers. The
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Figure 4: Excitation trajectories of KUKA robot

second step is to carry out the spectrum analysis on the measured joint positions, velocities and torques data.
This analysis helps us to calculate the cutoff frequency of the filters to remove the noise on these data. We
found that the original data are in the region before 20 [Hz]. For filtering the data obtained from previous
steps, we can use the low-pass butterworth filters. In MATLAB, we can first use the function buttord to
calculate the order and exact cutoff frequency of butterworth filter which were 7 and 21.4 [Hz], respectively.
These values together with obtained data from previous steps were input into functions butter and filtfilt
to obtain the filtered data. Eventually, these processed data are used to estimate the dynamic and friction
parameters thorough WLS, as given in tables 1 and 2, respectively. Moreover, figures 5 to 7 illustrates the
results of identification validation for first three joints of KUKA robot.

Table 1: The value of the base dynamic parameters
and their standard deviations of KUKA robot

Parameter Estimated value σθ̂bi
θb1 31.95 0.25
θb2 38.53 0.92
θb3 -3.22 0.57
θb4 -0.675 0.88
θb5 -6.428 0.27
θb6 55.22 0.89
θb7 2.504 0.14
θb8 -33.9 0.65
θb9 1.347 0.47
θb10 1.7 0.25
θb11 -0.201 0.15
θb12 -0.47 0.27
θb13 20.697 0.35
θb14 4.717 0.57
θb15 -3.595 0.64

Table 2: The value of the estimated friction parame-
ters and their standard deviations of KUKA robot

Parameter Estimated value σθ̂bi
Fc1 34.995 0.57
Fv1 23.17 0.66
Fc2 65.338 0.48
Fv2 9.664 0.88
Fc3 32.7 0.54
Fv3 26.72 0.68

6 First Proposed Optimal Control Method

What we present in this section is a new method which solves the OCP of robot manipulators globally.
Usually the existing methods result in a local optimal solution for this problem, obtained by fulfilling a
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Figure 5: Validation results for actual and esti-
mated τ1

Figure 6: Validation results for actual and esti-
mated τ2

Figure 7: Validation results for actual and estimated τ3

series of necessary conditions such as those presented in Ponntryagin’s maximum principle or necessary
KKT conditions in direct methods. This method, which is presented under a theorem, can be used for both
set-point regulating tasks (e.g. pick and place parts or spot welding tasks) and trajectory tracking tasks
such as painting or welding tasks. However, the proposed method has a limitation so that it can not support
the physical constraints on robot manipulators.

6.1 New Proposed Theorem

In this subsection we present our first method to solve unconstrained OCP of robot manipulators which is
formulated under the following theorem,
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Theorem. Let A, B be positive definite matrices and let they be congruent, such that B = PTAP .
Suppose P is a stable matrix such that PTA = AP . Then the criterion

J =

∫ ∞
0

(
ξ̇TAξ̇ + ξTBξ

)
dt (6)

has the global minimum value

Jmin =
1

2
ξT (0) C ξ (0)

on the set of differentiable curves ξ (t) such that limt→∞ ξ (t) = 0. The optimal solution is ξ (t) =
ePtξ (0). The matrix C is −2AP .

6.2 Realization

For robot equation
Mq̈ +Nq̇ +G = u (7)

let us define a state
x = (q1, q̇1, q2, q̇2, . . . , qn, q̇n)

T
. (8)

Now define
e = xd − x (9)

where e is a m× 1 vector with m = 2n. Let us study the problem to find a matrix T such that

ξ = −T e (10)

where ξ ∈ Rn×1 and T ∈ Rn×m. Our aim is to find a suitable form of matrix T .
From ξ̇ = Pξ given in proof of the proposed theorem we obtain T ė = PTe and so for e (0) = e0 we have

ξ (0) = −Te0. Thus, we achieve the following matrix equation

T ė = PTe (11)

which will play an important role. The state equation of (7) is

ẋ = f (x) + g (x)u (12)

and so
ė = ẋd − ẋ = ẋd − f (x)− g (x)u,

where x = xd − e. The equation (12) may be written as

ẋi−1 = xi

ẋi = fi (x) +

n∑
j=1

gij (x)uj

for i = 2, 4, 6, . . . ,m, or we can write it as

ẋ2k−1 = x2k

ẋ2k = f2k (x) +

n∑
j=1

g2k,j (x)uj
(13)

for k = 1, 2, 3, . . . , n.
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6.2.1 Option of Matrix T

The equation (11) can be written as (m > n)
@ T11 T12 A T13 T14 T15 · · · T1m
T21 T22 @ T23 T24 A T25 · · · T2m
T31 T32 T33 T34 @ T35 · · · T3m

...
Tn1 Tn2 · · · @ Tn,m−1 Tn,m A




ė1
ė2
ė3
...
ėm

 =


P11 · · · P1n

...

Pn1 · · · Pnn




T11 T12 · · · T1m
T21 T22 · · · T2m
T31 T32 · · · T3m

...
Tn1 Tn2 · · · Tnm




e1
e2
e3
...
em

 (14)

The matrix T is n × m and we choose its quasi-diagonal as non-zero elements, others will be zero. The
matrix P let be diagonal. Thus the matrix equation (14) can be rewritten in

T11ė1 + T12ė2 = P11T11e1 + P11T12e2

T23ė3 + T24ė4 = P22T23e3 + P22T24e4

...

Tn,m−1ėm−1 + Tnmėm = PnnTn,m−1em−1 + PnnTnmem

(15)

From ẋ2k−1 = x2k in (13) we obtain equations

ė1 = e2, ė3 = e4, · · · ėm−1 = em (16)

and so we can rewrite (15) in the form

T12ė2 = P11T11e1 + (P11T12 − T11) e2

T24ė4 = P22T23e3 + (P22T24 − T23) e4

...

Tnmėm = PnnTn,m−1em−1 + (PnnTnm − Tn,m−1) en

(17)

The equation (16) and (17) we may write

ė2k−1 = e2k

ė2k =
PkkTk,2k−1
Tk,2k

e2k−1 +

(
Pkk −

Tk,2k−1
Tk,2k

)
e2k

(18)

for k = 1, 2, · · · , n.
Because here we have a fraction

Tk,2k−1

Tk,2k
, it will be better to choose

Tk,2k = 1 (19)

and then for

Mk =

 0 1

PkkTk,2k−1 Pkk − Tk,2k−1

 (20)
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we may rewrite (18) as (
ė2k−1
ė2k

)
= Mk

(
e2k−1
e2k

)
(21)

How it is with stability?
Let us examine the eigenvalues of Mk as follows

det (Mk − λI) =

∣∣∣∣∣∣
−λ 1

PkkTk,2k−1 Pkk − Tk,2k−1 − λ

∣∣∣∣∣∣ = λ2 − λ (Pkk − Tk,2k−1)− PkkTk,2k−1

The characteristic equation is det (Mk − λI) = 0, so

(λ− Pkk) (λ− Tk,2k−1) = 0.

Here we can write

λ1 = Pkk

λ2 = −Tk,2k−1

Pkk, Tk,2k−1 are real numbers, thus from theory of stability λ1 < 0, λ2 < 0 and hence

Pkk < 0

Tk,2k−1 > 0
(22)

Therefore, matrix P must be stable which it is our assumption of the previous theorem. The matrix T then
has the form

T =


T11 1 0 0 0 0 · · · 0
0 0 T23 1 0 0 · · · 0
0 0 0 0 T35 1 · · · 0
...

...
...

0 Tn,m−1 1

 (23)

The numbers Tk,2k−1 can be chosen arbitrary, but positive.

6.2.2 Solution of ei and Optimal feedback Control

Let a = PkkTk,2k−1, b = Pkk − Tk,2k−1. Then characteristic equation of (18) is

λ2 − bλ− a = 0⇒ λ1,2 =
b±
√
b2 + 4a

2
,

in which b2 + 4a = (Pkk − Tk,2k−1)
2

+ 4PkkTk,2k−1 = (Pkk + Tk,2k−1)
2 ≥ 0, so

λ1,2 =
1

2
(Pkk − Tk,2k−1 ± |Pkk + Tk,2k−1|)⇒

{
λ1 = Pkk

λ2 = −Tk,2k−1

Thus

e2k−1 = ck1e
Pkkt + ck2e

−Tk,2k−1t

e2k = ė2k−1 = Pkkck1e
Pkkt − Tk,2k−1ck2e−Tk,2k−1t

(24)

Eventually, from the equation
ė = ẋd − f (x)− g (x)u

From the equation
ė = ẋd − f (x)− g (x)u, (25)
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we have
g (x) u = ẋd − ė− f (x) , x = xd − e. (26)

Now we can exploit two following ways to derive the optimal control u:

A. Multiplying (25) by T
T g (x) u = T (ẋd − f (x))− T ė, (27)

and according to (11) we will have

T g (x) u = T (ẋd − f (x))− PTe, (28)

Let us compute the multiplication T g (x) in the left hand side of the above equation:

T · g =


T11 1 0 0 0 0 · · · 0
0 0 T23 1 0 0 · · · 0
0 0 0 0 T35 1 · · · 0
...

...
...

0 Tn,m−1 1





0 0 · · · 0
g21 g22 · · · g2n
0 0 · · · 0
g41 g42 · · · g4n
...

...
...

...
0 0 · · · 0
gm1 gm2 · · · gmn


=


g21 g22 · · · g2n
g41 g42 · · · g4n
...

...
...

...
gm1 gm2 · · · gmn.

 (29)

Let us denote

g̃ =


g21 g22 · · · g2n
g41 g42 · · · g4n
...

...
...

...
gm1 gm2 · · · gmn.

 (30)

We see g̃ is a square matrix of type n× n and suppose det g̃ 6= 0; hence it is a regular matrix and we
can solve (28)

u (t) = (g̃)
−1
T (ẋd − f (x))− (g̃)

−1
P T e (31)

Therefore, in this way we obtained an optimal control of our problem by (31).

B. Remember, we can use the equation of robot motion (7) for establishing of the control u (t). In fact,
using (18) and (9) we obtained x = x (t) and from ((8)) we can get q (t) and q̇ (t) and by derivative of
q̇ we have q̈ (t). If we substitute these results into ((7)), we obtain the control vector u = u (t).

Remark 2. The method A is more general, because there is used the formula (12). So we employ only
method A to obtain the optimal control u (t).

Let us now consider two cases:

a. Let be given e = e (t), for example by solving (21). Then by (9) we are able to find x (t) and by a
substitution into (31) we obtain the optimal control.

b. Contrarily, let be given an optimal control u = u∗ (t). Then by (12) we can compute x (t) and then by
substitution of these results into (25) we obtain a vector ė (t), from which follows e (t).
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Figure 8: Optimal feedback control schematic

Figure 9: Simplified optimal feedback control system

In this manner we opened a way into the optimal feedback control for the precise model of robot (12).
The feedback control is schematically depicted on the Figure 8. Really, we can mutually interchange the
block ROBOT onto the relation (12), because all positions and motions are precisely described by (12) about
our presumption. This schematic can be simplified as shown in Figure 9.

This schematic can be adjusted onto an adaptive control, if the equation (12) is not a precise model of
robot motion.

Let us now apply this method into the KUKA robot whose dynamics were obtained as explained in
sections 4 and 5. Because of space limitation in this text, we only present the optimal results of trajectory
tracking case obtained by this method. Thus, let the following desired trajectories for the first three joints
of the robot:

qd1 = 0.3 + 0.1 sin (π t)

qd2 = 0.8 + 0.2 sin (2π t)

qd3 = 0.5 + 0.3 sin (3π t)

(32)

The objective is to track the above desired trajectories by the robot so that at the same time the cost
functional (6) is minimized. Thus, let the following matrices

A =

 2 −1 0
−1 2 −1
0 −1 2

 , T =

2 1 0 0 0 0
0 0 3 1 0 0
0 0 0 0 4 1


where A is a positive definite matrix and matrix T is chosen according to (23). As a result, the optimal
trajectories (joint disposition, velocity and torque of first three joints) of KUKA robot are obtained by this
method as shown in Figure 10 . Note that the robot is in its home position in t = 0. Of course, it can be in
any other initial configuration. In this case the minimum value of the cost functional (6) is 50.138.

12



Figure 10: Optimal trajectories of KUKA robot obtained by the proposed method in trajectory
tracking case

6.3 Adaptive Global Optimal Control

In the previous subsections we developed an unconstrained global optimal controller for robot manipulators.
However, very often, there are some uncertainties in the dynamic model of the robot manipulators. One
possibility in controlling such systems whose exact models are not available is adaptive control technique
[2, 30].

In this subsection we attempt to extend our proposed controller in more general case in which an exact
model of the considered robot does not exist. In fact, our objective is to design an adaptive optimal controller
(AOC) whose central core is the optimal trajectory generator (OTG) proposed in the previous sections.

As explained earlier, the dynamic model of an n-axes robot manipulator can be expressed as the following
form

M (q) q̈ +N (q, q̇) q̇ +G (q) = Y (q, q̇, q̈) θ = τ (33)

where Y is an n × m matrix whose elements are nonlinear functions of q, q̇, q̈ and θ ∈ Rm×1 is a vector
whose entries are identifiable parameters of the considered robot. The elements of vector θ are functions of
dynamic and friction parameters of the robot whose values usually are not provided by robot manufacturers
and researchers have to measure these values themselves by robot identification experiments (as explained
in section 5, in detail). Therefore, the uncertain state space representation of the robot can be written as
the following form

ẋ = f
(
x, θ̂
)

+ g
(
x, θ̂
)
u (34)

Let us now consider the structure of the proposed AOC as illustrated in Figure 11 which actually is
an adaptive self-tuning controller. In this structure the values of the elements of vector θ are estimated in
an on-line manner and then the estimated control input of the robot (τ̂) is calculated on the basis of these
estimated parameters in each time instance. Before explaining the internal structure of the on-line estimator,
we require to introduce some variables in the proposed AOC:

• predicted torque defined as τ̂ (t) = Y (q (t) , q̇ (t) , q̈ (t))θ̂ (t)

13



Figure 11: General structure of adaptive optimal controller of robot manipulators

• exact value of unknown parameters, denoted θ

• parameter estimation error defined as θ̃ = θ̂ − θ

• prediction error defined as e (t) = Y θ̂ (t)− Y θ (t)

We can use the procedure used in the standard least-square (LS) scenario to design the on-line estimator.
In fact, the estimation of the parameters can be obtained by minimizing the following total prediction error
with respect to θ̂

J =

∫ t

0

∥∥∥τ (s)− Y (q (s) , q̇ (s) , q̈ (s)) θ̂ (s)
∥∥∥2 ds. (35)

According to LS method, the solution of the above minimization problem is obtained as follows:

θ̂ (t) =

[∫ t

0

Y TY ds

]−1 ∫ t

0

Y T τ (s) ds. (36)

However, in computation point of view, the equation (36) is not efficient and it can be converted into a more
appropriate form with defining the following square matrix

Φ (t) =

[∫ t

0

Y TY ds

]−1
. (37)

whose derivative is

d
[
Φ−1 (t)

]
dt

= Y T (q (t) , q̇ (t) , q̈ (t)) Y (q (t) , q̇ (t) , q̈ (t)) . (38)

Let us now consider the following identity

d

dt

[
ΦΦ−1

]
= Φ̇Φ−1 + Φ

d

dt

[
Φ−1

]
= 0, (39)
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Figure 12: Simplified adaptive optimal control system for robot manipulators
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Figure 13: Vertical two links robot manipulator

and so

Φ̇ = −ΦY TY Φ . (40)

Eventually, the unknown parameters can be updated by the following causal equation which is obtained by
differentiating (36) and using (37)

˙̂
θ = −Φ (t) WT e . (41)

For investigating the convergence of the above on-line estimator, it is easy to obtain the following equation
using equations (38) to (41)

d

dt

[
Φ−1 (t) θ̃ (t)

]
= 0, (42)

and hence
θ̃ (t) = Φ (t) Φ−1 (0) θ̃ (0) . (43)

Therefore, if smallest eigenvalue of the integral
∫ t
0
Y T Y ds (according to 37) goes to infinity as t→∞, then

in (43) Φ → 0 and so θ̃ → 0 and each trajectory that satisfies this condition is called persistent excitation
trajectory. It is worth to be noted also that, according to (43), if the initial value Φ (0) is large enough, then
it results in smaller parameter error. Note that the structure given in Figure 11 can be simplified as shown
in Figure 12

Let us apply the proposed AOC into a vertical two links robot, shown in Figure 13, whose regressor
dynamics is as follows
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[
Y11 Y12 Y13 Y14 Y15
Y21 Y22 Y23 Y24 Y25

]
·


θ1
θ2
θ3
θ4
θ5

 =

[
τ1
τ2

]
(44)

where

Y11 =l21 q̈1 + gl1 cos (q1) ,

Y12 =2l1 cos (q2) q̈1 + l1 cos (q2) q̈2 + g cos (q1 + q2)− l1 sin (q2)
(
2q̇1q̇2 + q̇22

)
,

Y13 =q̈1, Y14 = q̈1 + q̈2, Y15 = g cos (q1) ,

Y21 =0, Y22 = l1 cos (q2) q̈1 + l1 sin (q2) q̇21 + g cos (q1 + q2) , Y23 = 0,

Y24 =q̈1 + q̈2, Y25 = 0,

and
θ1 = m2, θ2 = m2 lc2, θ3 = I1 +m1 l

2
c1, θ4 = I2 +m2 l

2
c2, θ5 = m1 lc1.

so that according to Table 3, the exact values of these parameters are θ1 = 1, θ2 = 0.2, θ3 = 0.68, θ4 =
0.54, θ5 = 0.6. The objective is that the joints of the robot track the following desired trajectories:

Table 3: Some typical function spaces
m1 m2 l1 l2 lc1 lc2 I1 I2
2 kg 1 kg 0.6 m 0.4 m 0.3 m 0.2 m o.5 kg ·m2/rad o.5 kg ·m2/rad

qd1 = 0.3 + 0.1 sin (π t)

qd2 = 0.8 + 0.2 sin (2π t)

Therefore, assuming a disturbance as d (t) = o.5 sin (50t) in the system, the optimal trajectories are obtained
as shown in Figure 14. In this figure the blue dashed trajectories are actual ones while the trajectories with
continuous line are desired trajectories. In addition, Figure 15 depicts the estimation parameters θ̂1 to θ̂5
existed in dynamic model of the system.

7 Second Proposed Optimal Control Method

7.1 Formulation of Robot Optimal Control Problem

As stated in subsection 4.2, dynamics of the serial robot manipulators can be expressed as follows:

M (q) q̈ +N (q, q̇) = τ , q (t0) = q0, q (tf ) = qf (45)

where
N (q, q̇) = V (q (t) , q̇ (t)) + G (q (t)) + F (q̇) (46)

In order to obtain the state space representation of the robot, let us define position/velocity state x ∈ R2n

as

x =

[
x1

x2

]
=

[
q
q̇

]
(47)

where n is the number of robot’s DOF. Then, the state space representation of the system (45) may be
expressed as
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Figure 14: Optimal trajectory of two links robot obtained by applying AOC

Figure 15: Estimated parameters of two links robot
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ẋ = f (x) + g (x) τ , x (t0) = x0, x (tf ) = xf (48)

where

f (x) =

[
x2

−M−1 (x1)N (x1,x2)

]
, g (x) =

[
0

M−1 (x1)

]
(49)

Now the optimal control of the robot manipulators may be formulated as follows:
find an admissible input torque vector which steers the robot system (48) at a finite time in such a way that
the cost function (performance criterion) given by

J = φ (x (tf ) , tf ) +

∫ tf

t0

L (x (t) , τ (t) , t) dt (50)

is minimized, while the following constraints are met:

x (0)− x0 = 0, initial state constraints

x (tf )− xf = 0, final state constraints

C (x (t) , τ (t)) ≤ 0, state & control constraints

(51)

It must be noted that the final time tf can be either fixed or free depending on the kind of the performance
index used; for instance, in the case of time OCP, tf must be free and in other cases it is usually fixed.

7.2 Proposed Method for Solving OCP of Robot Arms

The basic idea of the proposed method is to combine three techniques including Iterative Linearization
(IL), Iterative Learning Control (ILC) and Parametric Optimization (PO) methods. Let a robot which is
performing a repeated task such as pick and place parts in an assembly line. According to this method,
the optimal control for nonlinear system (robot) is computed in several repetitions (trials). In other words,
in each trial the IL method obtains a linear time varying (LTV) version of the nonlinear system (robot)
and simultaneously, an optimal control input is computed for each LTV by the parametric optimal control
technique. In each trial, also, the optimal solution of LTVs are stored in memory of the system because
according to IL method they will be used in the next trial. In fact, the optimal control of nonlinear system
is improved in each trial by means of optimal solution obtained from previous trial; hence, this procedure is
compatible with the performance of ILC.

Let us now consider the IL method in more detail. According to this method the state space representation
of the nonlinear system (48) may be replaced by the following form, called state dependent coefficient (SDC)
form

ẋ = A (x) x +B (x) u, x(0) = x0, x (tf ) = xf (52)

where u = τ and

A (x) = ∇xf (x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 , B (x) = g (x) (53)

where without loss of generality, it is assumed xe = 0 is the equilibrium point of the system. Thus, the
dynamic system (52) can be approximated by a sequence of LTV systems in the form

ẋ[i] (t) = A
(
x[i−1] (t)

)
x[i] (t) +B

(
x[i−1] (t)

)
u[i] (t) ,

x[i] (t0) = x0, x
[i] (tf ) = xf , i = 1, 2, . . .

(54)
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where x[0] (t) can be chosen as an arbitrary initial guess and for convenience it may be considered as initial
condition, i.e., x0. In fact, the LTV (54) is used as the robot dynamics in trial ith and its optimal control
u∗[i] (t) is computed by PO method. Also according to the proposed method, the optimal state of trial i, i.e.
x∗[i] (t) together with optimal control u∗[i] (t) and an error signal as e[1] (t) = u∗[1] (t)− u∗[0] (t) are stored in
memory of the system. In the next subsection, we will show how the optimal control input is computed for
each LTV system (54) and then the proposed algorithm will be presented.

7.3 Parametric Optimization Method

In this subsection the parametric optimization method used in the proposed method is presented. The basic
idea in the parametric optimal control method is that the original infinite dimension optimal control problem
is converted into a finite dimension optimization problem (known as constrained nonlinear programming
(CNP)) which can be solved by standard optimization algorithms like sequential quadratic programming
(SQP). The parametrization is usually made using the spline functions which can be either polynomial spline
or B-spline functions; since, they have sufficient attributes to converge to a good optimal solution in CNPs,
as well as they cause faster convergence rate and are appropriate to approximate the practical trajectories
for robot manipulators. Note that in the polynomial spline functions, the coefficients of polynomials are
parameters and in the B-splines, the control points are used as parameters which need to be optimized.

In the case of OCP of robot manipulators stated in section 7.1, the parametrization procedure is performed
by considering the following polynomial spline function, as each joint position of the robot:

x1j (t) = qj (t) =


s0 (t) t0 ≤ t < t1
s1 (t) t1 ≤ t < t2

...
...

s` (t) t` ≤ t < t`+1 = tf

j = 1, 2, . . . , n (55)

where si is a cubic spline function defined by

si (t) = p1i (t− ti)3 + p2i (t− ti)2 + p3i (t− ti) + p4i (56)

for i = 0, 1, . . . , `. According to (56), the joint velocity and acceleration trajectories can be expressed as

ṡi (t) = 3p1i (t− ti)2 + 2p2i (t− ti) + p3i

s̈i (t) = 6p1i (t− ti) + 2p2i
(57)

In order to apply these cubic spline functions as the joint position trajectories of the robot, the following
conditions should be satisfied:

• the initial and final state constraints represented in (51) should be met.

• qj (t) should be continuous on the interval [t0, t`+1 = tf ].

• q̇j (t) should be continuous on the interval [t0, t`+1 = tf ].

• q̈j (t) should be continuous on the interval [t0, t`+1 = tf ].

After fulfilling the conditions above, among the coefficients p1i, p2i, p3i and p4i some of them are dependent
while the rest are independent. It can be shown that the number of independent coefficients is n` which
are used as the parameters in the CNP mentioned above. After applying the joint position, velocity and
acceleration terms represented above, into each LTV (54), the control input can be obtained in terms of
independent parameters. If we then substitute parametric joint, velocity and control input trajectories into
the cost function (50), we obtain a parametric function J (p) where p stands for independent parameters.
Such substitutions can be repeated for constraints (51) and eventually we obtain a constrained optimization
programming (CNP) which should be solved. One of the useful tools to solve CNPs is the optimization
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toolbox of MATLAB specifically the function fmincon. Although the parametrization in robot OPC usually
is done by polynomial spline functions, however, they have a property which is significant in the case of
moving of robot manipulator. This property is that the changing a parameter affects on entire shape of the
spline curve, while we need to alter a part of curve. This problem can be resolved using B-spline functions
which have the following form

q (t,P) =

m∑
j=0

pjBj,k (t) (58)

where P = {p0, . . . , pm} are the control points (which are used as parameters in parametrization procedure)
and k is the order of the B-spline. In (58) a knot space is defined as

I = {t0 ≤ · · · ≤ tk−1 ≤ tk ≤ · · · ≤ tm ≤ tm+1 ≤ · · · ≤ tm+k} (59)

as well as Bj,k (t) is the B-spline basis function expressed as the following recursive formulation:

Bj,k (t) =
t− tj

tj+k−1 − tj
Bj,k−1 (t) +

tj+k − t
tj+k − tj+1

Bj+1,k−1 (t) (60)

where

Bj,1 (t) =

{
0 if tj ≤ t < tj+1

1 otherwise
(61)

In the case of robot manipulator’s OCP, usually the cubic B-spline functions (k = 4) is used to parametrize
the joint variables and the set of control points P are employed as parameters in the optimization problem
[4].

7.4 The Proposed Algorithm

Let us now combine the mentioned techniques, i.e. IL, ILC and PO methods to solve the OCP of the robot
manipulators.

First, consider a robot with following dynamics which performs a special task repeatedly

M (q) q̈ + V (q, q̇) +G (q) = τ (62)

with the boundary conditions

q (0) = q0, q̇ (0) = qd0

q (T ) = qT , q̇ (T ) = qdT .
(63)

By considering the following states

x =

[
x1
x2

]
=

[
q
q̇

]
(64)

the state space representation of the robot can be written as follows

ẋ (t) = f (x (t)) + g (x (t))u (t) , x (0) = x0, x (T ) = xT (65)

which can be rewritten as the following SDC form

ẋ = A (x)x+B (x)u (66)

where, without loss of generality, xe = 0 is its equilibrium point and

A (x) = ∇xf (x) , B (x) = g (x) , u = τ (67)

Then the matrices A and B are achieved as follows

A (x) =

[
Zn×n In×n

−5x
(
M−1 (x1)N (x1, x2)

)] , B =

[
Zn×n

−M−1 (x1)

]
(68)

20



where Z and I are zero and identity matrices, respectively, with the specified dimensions. Now we are
going to obtain the optimal control of the considered robot which is performing the desired repeated task.
Therefore, the following linear dynamics is considered as the model of the robot in the first trial

ẋ[1] (t) = A
(
x[0] (t)

)
x[1] (t) +B

(
x[0] (t)

)
u[1] (t) , x[1] (0) = x0, x

[1] (T ) = xT (69)

where the cost functional considered in this trial is

J [1] = φ
(
x[1] (T ) , T

)
+

∫ T

0

L
(
x[1] (t) , u[1] (t) , t

)
dt. (70)

As explained in the previous subsection, the above OCP can be solved by parameterizing states of the
system by spline functions S (t;P ). After solving the obtained parametric optimization problem, the optimal
parameter matrix P ∗[1] is obtained for the first trial. Accordingly, the optimal control of the first trial is
obtained as follows

u[1] (t) =
[
Zn×n M

(
x
[0]
1 (t)

)]([ẋ[1]1 (t)

ẋ
[1]
2 (t)

]
−

[
Zn×n In×n

−5x
(
M−1

(
x
[1]
1

)
N
(
x
[0]
1 , x

[0]
2

))][x[1]1

x
[1]
2

])
(71)

where x
[1]
1 (t) = S

(
t;P ∗[1]

)
and x

[1]
2 (t) = ẋ

[1]
1 (t) = Ṡ

(
t;P ∗[1]

)
. In addition, let us define an error variable

as
e[1] (t) = u∗[1] (t)− u∗[0] (t) (72)

where it is assumed u∗[0] (t) = 0. The optimal state x∗[1] and control u∗[1] together with e[1] are stored
in memory of the system. Other variable stored in memory of the system from first trial is first order
optimality, denoted δ[1]. It is a variable produced by nonlinear programming algorithm which actually shows
the variation of the cost functional, i.e. δJ [1]. If u∗[1] is optimal solution, then δ[1] must vanish on u∗[1].

As such in the first trial, the above procedure is performed in the subsequent trials so that in the trial
ith, the optimal state and control of trial i− 1th is used

ẋ[i] (t) = A
(
x[i−1] (t)

)
x[i] (t) +B

(
x[i−1] (t)

)
u[i] (t) , x[i] (0) = x0, x

[i] (T ) = xT (73)

with considering the following cost functional in this trial

J [i] = φ
(
x[i] (T ) , T

)
+

∫ T

0

L
(
x[i] (t) , u[i] (t) , t

)
dt (74)

Let us now define two predetermined constants ε1, ε2 which are close to zero and are used as the stop criteria
of the proposed algorithm.

Here, we present the proposed algorithm whose steps, as demonstrated in Figure 16, are listed as follows:

1. Obtain the state space representation and then the SDC form of the considered robot manipulator
system.

2. Get the initial and final configurations (q0, qT );

3. Guess an arbitrary state x[0] (t) , t ∈ [0, T ], and store it in memory of the system.

Let the iteration index i be one.

4. Using x[i−1] (t) and utilizing spline-based optimal control technique explained in the previous subsec-
tion, compute the optimal force/torque vector u∗[i] (t) and optimal state vector x∗[i] (t) of the LTV
system in step i represented in (73) given a cost functional, physical constraints of the robot and
boundary conditions. Also store x∗[i] (t) and u∗[i] (t) in memory of the system together with δ[i].

5. Apply u[i] (t) to the ith trial.

21



Yes No 

Given the state space, SDC forms, boundary 
conditions and mechanical constraints of the robot 

i=1, 
[ ]0

0x x=  

Start 

[ ] ( ) [ ]( )
[ ] ( ) [ ]( )
1

2

;

;

i i

i i

x t S t P

x t S t P

=

= &
 

[ ] ( ) [ ] ( )( )
[ ] ( )
[ ] ( ) [ ]( ) [ ] [ ]( )( )

[ ]

[ ]
1 1

1

1

1 1

2 2

11
1 12

,

n n n n

n n

x

i i
i i

i i ii i

Z Ix t x
u t Z M x t

M x N x xx t x
-

- - -

´ ´

´ -

æ öé ùé ù é ùé ùç ÷ê ú= -ê ú ê úë û -ç ÷ê ú ë ûë û ë ûè ø

&
& "  

Solve NLP problem PS   

to produce [ ]* iP  

Store [ ] ( )* ix t , [ ] ( )* iu t , [ ]* iP  

in memory of the system 

Compute  
[ ] [ ] ( ) [ ] ( )* * 1i i ie u t u t-= -  

[ ] ( )
[ ]

1

2

i

i

te e

d e

£

£
 i=i+1 

Apply [ ] ( )* iu t  

as optimal torque into  
trials i+1, i+2, … 

[ ] ( ) [ ] ( )( ) [ ] ( ) [ ] ( )( ) [ ] ( )
[ ] ( ) [ ] ( )

[ ] [ ]( )
[ ] [ ] ( )( ) [ ] ( ) [ ] ( )( )

1 1

0

0

,

,

0 ,

, ,

0

,

i i

i i i i i

i i

T

Ti i i i

x t A x t x t B x t u t

x x x T x

J x T T L x t u t t

G x

d

u

tf

- -= +

= =

£

= + ò

&

 

Figure 16: Flowchart of the proposed method
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Table 4: Joint position, velocity and acceleration constraints of KUKA robot
Joint qi [deg] |q̇i| [deg/s] |q̈i|

[
deg/s2

]
τi[N.m]

1 ±155 151 450 550
2 100 to -55 151 450 550
3 70 to -220 151 450 550

6. If ∥∥∥e[i] (t)
∥∥∥ ≤ ε1 and δ[i] ≤ ε2 (75)

then terminate the computations and u[i] (t) can be used for the next trials. If stopping criteria given
in (75) is not satisfied, then i = i+ 1 and return to step 4.

7.5 Applying proposed method into KUKA robot

As explained in the previous sections, the dynamic model of the KUKA robot was obtained through an
experimental identification. In this subsection we are going to obtain the optimal trajectories of this robot
according to the joint position, velocity, acceleration and torque constraints of this robot listed in Table 4
[17]. For this problem, we consider the following cost function:

Jc =
1

2

∫ T

0

(
τTRτ + q̇TQq̇

)
dt (76)

where R and Q are symmetric positive definite weighting matrices. In this case study we use the following
diagonal matrices R,Q

R =

100 0 0
0 10 0
0 0 1

 , Q =

1 0 0
0 1 0
0 0 1

 . (77)

The optimal results are shown in Figure 17, considering the following boundary conditions:

q1 (0) = q2 (0) = q3 (0) = 0,

q̇1 (0) = q̇2 (0) = q̇3 (0) = 0,

q1 (T ) = 50 (deg) , q2 (T ) = 25 (deg) , q3 (T ) = 30 (deg) ,

q̇1 (T ) = q̇2 (T ) = q̇3 (T ) = 0.

(78)

This figure shows that the optimal controls of KUKA robot converge after 8 trials. Also Table 5 represents
some information regarding different trails of the optimization procedure for the KUKA robot. As this table
shows, in the first trial the minimum traversal time is 4.63 sec which results in a minimum cost function
equals 148.78. However, in the subsequent trials a trade-off is made between these two values so that from
trial forth the value of Tmin is fixed. Moreover, we can obtain the necessary information about the rate
of convergence in this case study by referring to Figure 18. We can use the sequence of error norms to

obtain the rate of convergence. According to the value of elements of these three sequences (i.e.
∥∥∥e[i]j ∥∥∥ for

j = 1, 2, 3), their convergence rates are µ1 = 1
3 , µ2 = 1

6 , µ3 = 1
4 , respectively, according to the following

theorem and remark,
Theorem. Let the sequence

{
ζ µk

}∞
k=0

where ζ is a constant. This sequence converges linearly to zero with
rate µ if |µ| < 1.
Remark. If {ak}∞k=0 be a sequence and ak ≤ ζ µk, then {ak} converges to zero with at most rate µ.
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Table 5: Optimal data obtained for KUKA robot
Trial Number

of SQP
iterations

Number
of math
operations

Time of com-
putation

Jmin Tmin First order
Optimality
(δ)

1 22 302 2.85 148.78 4.643 151
2 17 271 2.68 122.63 5.38 38.7
3 15 258 2.61 124.87 5.42 23.9
4 15 259 2.6 126.83 5.647 2.88
5 15 262 2.62 126.8 5.647 0.43
6 14 257 2.5 125.792 5.647 0.0636
7 12 245 2.38 125.78 5.647 0.0022
8 11 235 2.34 125.627 5.647 00.000127

Figure 17: Optimal profiles of KUKA robot
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Figure 18: Successive errors of KUKA robot joints

8 Conclusion

Motivation of this study is to propose a new method to optimal control of serial robot manipulators. Let us
now consider the fulfillment of the considered objectives, stated in the section 3 as follows:

Objective 1: The first objective is to obtain the kinematic and dynamic models of our main case study,
i.e., KUKA IR 364/10 robot manipulator existed in robotic laboratory of Mechatronic faculty of TUL. The
kinematic model of this robot was derived employing modified Denavit-Hartenberg (MDH) notation. In the
context of dynamic model of this KUKA robot, we first develop an algorithm using recursive Newton-Euler
formulation. This algorithm was used as the main core of a GUI by which user can derive the dynamic model
of either 3 or 6 degrees of freedom robot manipulators by entering just robot MDH parameters. A writing
task was used to verify the validation of obtained kinematic and dynamic models of the KUKA robot in
comparison with these models produced by Robotic Toolbox of MATLAB (RTM).

Objective 2: The second objective is KUKA robot identification. In doing so, in the first stage a new
(regression) model of the robot dynamics which is linear in terms of a new set of parameters, so-called base
parameter set (BPS), which are compound of dynamic and friction parameters of the robot is derived. In the
second stage an excitation trajectory is calculated. This trajectory which is calculated from an optimization
problem has a considerable affect on the identification result and hence this stage must be carried out with
high attention. Eventually the elements of BPS for this KUKA robot which contains 21 parameters are
estimated and a validation stage is accomplished to verify the obtained model.

Objective 3: The third objective considered in this thesis is to solve unconstrained OCP of robot ma-
nipulators. So as to achieve this objective we present a completely innovative and new approach to solve
this problem in the case of point to point motion and trajectory tracking tasks. Unlike the existing methods
which yield a local optimal solution, the proposed method solves the considered optimal control problem with
obtaining a global optimal solution so that the computation time to find this solution is less than 0.01 sec.
noting that the robot dynamics is highly nonlinear and coupled. However, this method can not support any
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physical constraints on a robot arm. The proposed method which is a model-based controller was extended
into a more general case in which an exact model of the robot is not available, namely designing an adaptive
optimal control scheme for robot manipulators.

Objective 4: The fourth objective is to propose a new method to solve the constrained time-energy
optimal control problem of serial robot manipulators. we propose a combined method which contains Iterative
Linearization (IL), Iterative Learning Control (ILC) and Parametric Optimization (PO). In this method it is
assumed that the robot is performing a repeated task which is usual for robot arms in their applications. In
accordance with this method, in each repetition (trial) a linear time varying (LTV) version of robot dynamics
is derived by IL with the original considered cost functional. Then PO is used to solve the optimal control
problem in this trial and its solution is stored in memory of the system to use in the next trial (ILC). The
above procedure is repeated in the next trials so that after a finite number of trials the sequence of optimal
solutions converge to the optimal solution of the original nonlinear system (robot dynamics). Then, the limit
of the sequence is used to control of the next trials. The corresponding developed algorithm was applied
into all standard types of robot arm structures, i.e. SCARA, spherical, cylindrical and angular robots (such
as Puma 560, ABB IRB140 and KUKA IR 364/10 manipulators) for the different case of cost functionals.
For having a better insight regarding the proposed method, the optimal solution of the considered optimal
control problem for SCARA, spherical and cylindrical robots are obtained by direct multiple shooting and
spline-based optimal control methods as well. Then, a series of comparisons are made between the proposed
method and the other two methods. According to these comparisons, the following results were obtained for
the proposed method:

• In each trial a linear version of highly nonlinear robot dynamics is dealt with.

• Optimization problem is solved gradually during the the successive trials. In other words, as shown by
the optimal data given in tables of different case studies in chapter 5, the number of math operations
and computation time to find the optimal solution are divided on successive trials.

• The convergence rate of the sequence of optimal solutions is too fast, as shown in various case studies.

• It supports any type of cost functions (quadratic, non-quadratic, linear, nonlinear and so on ) and any
kind of constraints.

• It generates the smooth trajectory for robot motions causing reduction the stresses to the actuators
and to the manipulator structure.

• The possibility to set the initial and final joint accelerations and jerks a priori by the user.

• Unlike the multiple shooting method which produces a constant piecewise control, the proposed method
provides a continuous optimal control which can be implemented in practice.

• The structure of the proposed optimal control system is almost simple and it can be implemented
easily.
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