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Abstrakt

Tato dizerta£ní práce se zabývá teorií ne£tvercových systém·, coº je ne-

jobecn¥j²í p°ípad lineárních implicitních systém·. Konkrétn¥ji, práce se

zabývá vlivem stavové zp¥tné vazby na zm¥nu chování vý²e zmín¥ných

systém·. Hlavní pozornost je pak v¥nována problém·m p°i°azení pól·

£i struktury pól·. Tyto problémy pat°í k t¥m nejd·leºit¥j²ím v teorii

lineárního °ízení, protoºe se zam¥°ují na zm¥nu chování zp¥tnovazebního

obvodu volbou vhodné stavové zp¥tné vazby. Výsledkem je serie n¥ko-

lika v¥t, které p°ispívají k °e²ení zmín¥ných problém·. Za hlavní výsledek

práce lze povaºovat Theorem 5, kde jsou uvedeny nutné a posta£ující pod-

mínky pro p°i°azeí pól· v tzv. sloupcov¥ regularizovatelných systémech.

Teorie £tvercových (regularizovatelných) systém· je v sou£asné dob¥

jiº dob°e rozvinuta, av²ak roz²í°ení jejích výsledk· na ne£tvercové systémy

není zdaleka triviální. Na vin¥ jsou n¥které speciální vlastnosti ne£tver-

cových systém·, jako je nap°. nejedozna£nost stavových trajektorií £i

dodate£né podmínky na °ídící vstup, které vedou k existování stavové

trajektorie. Vzhledem k t¥mto vlastnostem bylo proto nutné p°ezkoumat

pojem °iditelnosti a navrhnout její novou de�nici, která se p°echází v

p·vodní de�nici v p°ípad¥ £tvercových systém·.

Teorie ne£tvercových systém· je uºite£ná p°i studiu velké ²kály sys-

tém·, nap°. ekonomických, biologických nebo elektronických, takºe pole

aplikovatelnosti dosaºených výsledk· m·ºe být velmi ²iroké.

Kli£ová slova: lineární systémy, zpetná vazba, p°i°azení pólu
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Abstract

The thesis is devoted to the theory of non-square systems - the most

general case of linear implicit systems which is described by the non-

square matrices. In particular, the e�ect of a proportional state feedback

upon the behavior of such systems is investigated. The main attention in

the work is given to the problems of pole and pole structure assignment by

feedback. These problems belong to the most important ones in control

theory. They aim at the assignment of the closed-loop behavior of the

system by choosing the appropriate state feedback gain. As a result, a

series of theorems contributing to the problems of pole and pole structure

assignment by state feedback for the non-square systems were established.

The main contribution is given in Theorem 5 which states the necessary

and su�cient conditions for the pole assignment problem in the so-called

column regularizable systems.

The class of square systems has been widely studied. But the results

as well as some concepts known for them can not be, in general, extended

for the non-square systems in an appropriate way. In fact, the non-square

systems possess some special features like the non-uniqueness of the state

trajectory or the presence of additional constraints upon the control input

to ensure the existence of the trajectory. Taking that into account, the

concepts of control that are closely related to the problem of pole assign-

ment, the most important of which is the controllability, are analyzed.

Then, in accordance with the task of pole assignment by a proportional

feedback, analogues of that concepts are proposed (which reduce to the

classical ones in the case of square systems).

The theory of non-square systems is very useful for describing and

studying a large variety of systems like economic, circuit, biological etc.

Hence, in our opinion, the application of the achieved results can be very

broad.

Keywords: linear systems, state feedback, pole assignment
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1 INTRODUCTION 1

1 Introduction

In the thesis, the main subject of the study is a non-square linear system

of the form

Eẋ(t) = Ax(t) +Bu(t), t ≥ 0, (1)

where x(t), u(t) is the state, the initial value of which is x(0) = x0, and the

control input, respectively, and E,A ∈ Rq×n, B ∈ Rq×m. In particular,

the e�ect of state feedback upon the system is investigated.

The system (1) will frequently be referred to as the triple (E,A,B).

It is called non-square or rectangular since q, in general, does not equal n.

Hence, the matrices E and A are non-square. The special cases of such

systems are recalled below.

• (E,A,B) is called square if q = n;

• (E,A,B) is called explicit if E ∼ In otherwise it is implicit;

• (E,A,B) is called regular if the pencil sE − A is regular (that is

when det[sE −A] 6= 0);

• (E,A,B) is called regularizable (by a proportional state feedback) if

there exists a matrix F ∈ Rm×n such that the pencil sE −A−BF
is regular.

The square systems (1) are assumed here to be regularizable - this guar-

anties the existence of its transfer function. Such systems have been widely

studied. The explicit systems were investigated at the �rst stage, and the

main concepts of control theory were introduced to describe their prop-

erties. When dealing with the regular, and then regularizable systems,

some new e�ects that had not properly been described by the existing

concepts were revealed. Hence the application of the results known for

the explicit systems was not suitable for some tasks. Similarly, rectangu-

lar systems possess some special features. And of course, their study is of

theoretical and practical interest (the rectangular systems comprise the

square systems as the special case).

The theory of non-square systems provides a suitable mathematical

tool for describing a large variety of systems like economic, production,

biological, physical etc., see [2, 15, 24] and references therein. Robotics is

another area where many models are in the form of non-square (generally



1 INTRODUCTION 2

nonlinear) systems and their linearization may lead to the systems of the

form (1). The non-square systems frequently appear in modeling some

networks like signal �ow graphs, Petri nets,.... and can be applied to the

�elds like circuit systems, composite systems. For example, in network

analysis, there are several e�ects, like hysteresis, that can be modeled

using rectangular systems of di�erential equations [19]. For the review of

some applications of the non-square systems see [11, 23, 28].

One of the basic problems of control lies in altering the behavior of the

system (1) so that a desirable performance is achieved. This is realized by

means of control inputs among of which the state feedback is very useful.

The dynamical behavior of the system is strongly in�uenced by its pole

structure. Therefore, the description of all the possible pole structures

of the system that can be assigned by di�erent feedback gains is of great

importance in control. The problem of pole structure assignment, here by

state feedback, treats with such a question. The closely related problem,

called as the pole assignment problem, deals with the question of existence

of a state feedback gain such that the prescribed poles will be assigned to

the system. These problems constitute to the fundamental problems of

control as they aim at shaping the desired closed-loop system response.

Hence, the pole assignment techniques belong to the basic tools for the

controller design. One can meet many modi�cations of these problems,

see for example [16, 20, 22, 31] and the references therein. The case when

just the �nite pole structure is assigned to the system (1) resulting in

the elimination of the so called impulsive behavior of the system is of

great practical interest [18]. An assignment of the pure in�nite eigenvalue

structure to the closed-loop system is also important in control. As an

example, the design of perfect observers can be considered [32].

Pole and pole structure assignment problems are widely studied by

many authors in the case of square systems. For the explicit systems

the problem of pole structure assignment has been completely solved, see

[8, 13, 17, 29, 31, 36]. The necessary and su�cient conditions for the

assignment of prescribed pole structure to the implicit and controllable

square systems are also known [18, 37]. Recent results for the same prob-

lem were given for the regularizable systems [9, 22]. The problem of pole

assignment and its special cases for the square systems is also well studied

[4, 5, 9, 12, 22, 26, 27]. As far as concerns the rectangular systems the
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literature on this topic is not very extensive, [9, 10]. In particular, the

authors solved there the problem of pole structure assignment for some

special cases of (1).

Such a notion as controllability of the system plays an important role

in the pole assignment problems. It describers the abilities for the shifting

the poles to the prescribed locations by means of control input. Control-

lability for the case of square systems was deeply studied by di�erent ap-

proaches like time-domain, frequency-domain etc. [6, 7, 19, 30, 31, 34, 35].

The case of rectangular systems is less studied. For such systems there

are a few papers [3, 14] devoted to this notion. But since controllability is

considered there to be adapted to di�erent tasks the approaches to it are

di�erent. This calls for further study in this direction especially in relation

with the problem of pole assignment by a proportional state feedback.

1.1 Problem formulation

Applying the (linear and proportional) state feedback

u(t) = Fx(t) + v(t), (2)

where v(t) is a new control input and F ∈ Rm×n is a state feedback gain,

yields the closed-loop system

Eẋ(t) = [A+BF ]x(t) +Bv(t). (3)

Under the Laplace transform of (3) (including (1) for F = 0) the system

is written as

[sE −A−BF ]X(s) = BU(s) + Ex0, (4)

withX(s), U(s) denoting the Laplace transforms of x(t), u(t), respectively.

The rank of the pencil sE −A−BF is denoted by r.

The pole structure of the system (E,A,B) is de�ned by the zero struc-

ture of the pencil sE−A [22] . The �nite zero structure of sE−A is given

by the invariant polynomials of sE−A, say ψi(s)�ψi+1(s), i = 1, . . . , r−1.

The in�nite zero structure is de�ned [1, 33] by the in�nite elementary di-

visors of sE−A of the orders µi > 1, µi− 1 = di, where di, i = 1, . . . , kd,

are called the in�nite zero orders.
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The poles of the system (E,A,B) are de�ned by the (�nite and in�nite)

zeros of sE−A. The �nite poles are described by the polynomial ψ(s) :=
r∏
i=1

ψi(s). The pole at in�nity is described by its multiplicity d :=
kd∑
i=1

di.

The di�erences between the systems (1) and (3) are mainly given by

the changes in the zero structure of sE − A − BF when varying F . By

choosing di�erent state feedback gains F we alter the zero structure of

sE−A−BF , and consequently the response of the system. This problem

is called as the pole structure assignment and is formulated as follows [22].

Pole Structure Assignment Problem:

Given a system (1), monic polynomials ψ1(s) � ψ2(s) � . . . � ψr(s), and

positive integers d1 ≥ d2 ≥ ... ≥ dkd , �nd necessary and su�cient con-

ditions for the existence of a matrix F in (2) such that the polynomials

ψi(s) and integers di will be the invariant polynomials and in�nite zero

orders of sE −A−BF , respectively.

A special case of the pole structure assignment problem is the problem

of pole assignment (characteristic polynomial assignment in the case of

explicit systems).

Pole Assignment Problem:

Given a system (1), monic polynomial ψ(s), and positive integer d, �nd

necessary and su�cient conditions for the existence of a matrix F in (2)

such that the polynomial ψ(s) and integer d will be the product of the

invariant polynomials and sum of the in�nite zero orders of sE−A−BF ,
respectively.

1.2 State of the art

The most general solutions of the problems of pole and pole structure

assignment to the systems (1) by state feedback (2) till now are described

below (for the notation of the indices see Feedback Canonical Form of (1)

in Section 3).
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• Necessary and su�cient conditions for the problem of pole assign-

ment have been established for the regularizable systems (see for

details Theorem 1 here), that is for the following case of (1)

� kη = 0 and kε = kq, see Theorem 1 in [22], Theorem 8 in [9].

• The conditions for the problem of pole structure assignment have

been given for the systems (1) satisfying

� kη = 0 and kε = kq, see Theorem 5 in [22];

� kη = 0 and kε = kq, and card{εi = 0} = 0, see Theorem 5 in

[9];

� kη = 0 and card{εi = 0} = 0, see Theorem 6 in [9].

In the �rst case there given just necessary conditions which are

su�cient in special cases (see Theorem 10 and Remark 1 here).

In the last two cases the problem is completely solved.

Controllability has been well studied for the regularizable systems (1).

Concerning the rectangular systems there a few papers [3, 14] devoted to

this concept. One can notice that the approach to controllability for the

systems when q < n is di�erent. This is caused by that this concept was

considered there to be adapted to di�erent tasks. Namely, controllability

was considered in relation to the possibility of the existence of the pre-

scribed state trajectory in [14] and the abilities for pole assignment by a

proportional and derivative feedback in [3].

2 Goals and objectives of the dissertation

Speci�c goals of the thesis were set as follows.

• Extend the concept of controllability known for the square systems

to the rectangular systems (1).

This concept is very closely connected with the pole and pole struc-

ture assignment problems since it describes our possibilities for

shifting the poles of the system (1).
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• Give the characterization of controllability indices for the non-square

systems.

The notion of controllability indices is very useful when treating the

problem of pole structure assignment to the systems (1).

• Contribute to the problem of pole structure assignment by state

feedback (2) for the case of rectangular systems (1).

This problem is of signi�cant value in control and it has not been

yet well studied in the case of non-square systems (1).

• Contribute to the problem of pole assignment by state feedback (2)

for the rectangular systems (1).

This problem is also of great theoretical as well as practical interest

and has not been yet well studied for the general case of (E,A,B).

3 Main tools

The system (1) is assumed to be in the Feedback Canonical Form [21].

This is very useful to investigate the in�uence of state feedback upon the

system. In particular, using a quadruple of the matrices P,Q,G, F , where

P, Q, G are invertible matrices and F is an m × n matrix over R, that

acts as a transformation, as follows

(P,Q,G, F ) ◦ (E,A,B) = (PEQ,P [A+BF ]Q,PBG) := (EC , AC , BC),

each system (E,A,B) can be brought into the Feedback Canonical Form.

The pencil sEC −AC consists of some of the following pencils,

sEC −AC := block diag {sEj −Aj} , j ∈ {ε, σ, q, p, l, η},

where sEj − Aj is again a block diagonal matrix pencil consisting of the

blocks, non-increasingly ordered by size, of types (bj), j ∈ {ε, σ, q, p, l, η},
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(bε)

εi+1︷ ︸︸ ︷
s −1

. . .
. . .
s −1


εi

(bσ)

σi︷ ︸︸ ︷

s −1

. . .
. . .

. . . −1
s



σi

(bq)

qi︷ ︸︸ ︷

−1

s
. . .

. . . −1

s



qi+1

(bp)

pi+1︷ ︸︸ ︷

−1 s

. . .
. . .

. . . s
−1



pi+1

(bl)

li︷ ︸︸ ︷

s −1

. . .
. . .

. . . −1
−ai0 −ai1 · · · s−aili



li

(br)

ηi︷ ︸︸ ︷

s

−1
. . .

. . . s
−1



ηi+1

,

The values describing these blocks are called:

• the nonproper controllability indices, ε1 ≥ . . . ≥ εkε ≥ 0;

• the proper controllability indices, σ1 ≥ . . . ≥ σkσ > 0;

• the almost proper controllability indices, q1 ≥ . . . ≥ qkq ≥ 0;

• the almost nonproper controllability indices, p1 ≥ . . . ≥ pkp ≥ 0;

• the �xed invariant polynomials of [sEC − AC − BC ] given by the

polynomials αi(s) = sli + ailis
li−1 + · · ·+ ai1s+ ai0, li > 0, which

satisfy α1(s) . α2(s) . · · · . αkl(s);
• the row minimal indices of [sEC −AC −BC ], η1 ≥ . . . ≥ ηkη ≥ 0.

The matrix BC is of the form

BC :=



0 0

Bσ 0

0 Bq
0 0

0 0

0 0

 , where


Bσ := block diag
{

[0 . . . 0 1]T ∈ Rσi
}kσ
i=1

,

Bq := block diag
{

[0 . . . 0 1]T ∈ Rqi+1
}kq
i=1

.
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The concept of Normal External Description (NED) [25] appears

to be very useful in control theory, especially when approaching the prob-

lems involving state feedback. Polynomial matrices N(s), D(s) are said

to form a NED of the system (E,A,B) if they satisfy the following con-

ditions:

•
[
N(s)
D(s)

]
forms a minimal polynomial basis for Ker[sE−A, −B];

• N(s) forms a minimal polynomial basis for KerΠ[sE−A], where Π

is a maximal left annihilator of B,

The NED of the system (1) re�ects just those parts of [sE −A,−B] that

are given by the ε− and σ−blocks. Let B̄ be such that [B B̄] is of full

column rank and rank [sE − A, − [B B̄]] = q, ∀s ∈ C ∪∞. The system

(E,A, [B B̄]) obtained from (E,A,B) by this trick is called the extended

system [22]. Let its NED be denoted as
[
NE(s)
DE(s)

]
. The relationship between

the closed-loop system and its NED is the following [22]:

• The non-unit invariant polynomials of both sE − A − BF and

DEF (s) coincide for any F , where DEF (s) := DE(s)−
[
F

0

]
NE(s).

To handle the �nite and in�nite poles of (1) in a uni�ed way, the

conformal mapping [16] s = 1+aw
w

, where a ∈ R, and is not a pole of

(E,A,B), is used. Then, the point s = ∞ is moved to w = 0, while all

the �nite points except s = a are kept in �nite positions. By applying

the conformal mapping, the pole structure assignment problem reduces to

the description of just the �nite zero structure of
[
wẼ− Ã− B̃(w)F

]
, the

w-analogue of sE−A−BF . In particular, this pencil posses the following

structure

ψi(w) := wdi+degψi(s)ψi

(
1 + aw

w

)
:= wdi ψ̃i (w) ,

where di and ψ̃i (w) are the in�nite zero orders and w-analogues of invari-

ant polynomials ψi(s) of sE −A−BF , respectively.
Using the concept of NED, the zero structure of D̃EF (w), the w-

analogue of DEF (s), is investigated. The matrix D̃EF (w) is, in general,

of the form
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D̃EF (w)=



D̃1ε S̃σ + D̃1σ D̃1q D̃1p D̃1l D̃1η

D̃2ε D̃2σ S̃q + D̃2q D̃2p D̃2l D̃2η

−−−−−−−−−−−−−−−−
0 0 Zq 0 0 0

0 0 0 Zp 0 0

0 0 0 0 S̃α 0

0 0 0 0 0 S̃η


(5)

where S̃σ := diag {(1 + aw)σi}kσi=1 , S̃q := diag {(1 + aw)qi}kqi=1 ,

Zq := diag {−wqi}kqi=1 , Zp := diag {−wpi}kpi=1 ,

S̃α := diag {α̃i(w)}kli=1 S̃η := blockdiag

{[
(1 + aw)ηi

−wηi

]}kη
i=1

,

and D̃ij are polynomial matrices satisfying the conditions:

degci

[
D̃1j

D̃2j

]
≤ ji, j ∈ {ε, σ, q, p, l, η}, i = 1, 2, . . . . (6)

Particularly, the problem of pole structure assignment to the system (1)

by a state feedback (2) is treated in the following way.

Approach to the Pole Structure Assignment Problem:

Given a system (1), monic polynomials ψ1(s) � ψ2(s) � . . . � ψr(s), and

positive integers d1 ≥ d2 ≥ ... ≥ dkd , �nd necessary and su�cient condi-

tions under which there exist matrices D̃ij satisfying (6) such that, using

the w-notation, the polynomials ψ̃1(w)wd1 � ψ̃2(w)wd2 � . . .� ψ̃r(w)wdr

(di := 0 for i > kd), will be the invariant polynomials of D̃EF (w), de�ned

in (5).

4 The problem of pole assignment

The recent result of the pole assignment problem for the systems (1) is

presented below.
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Theorem 1. [22] Given a regularizable system (1) ( kε = kq and kη = 0),

a monic polynomial ψ(s), and an integer d ≥ 0, then there exists a matrix

F in (2) such that det[sE − A − BF ] = ψ(s) and the sum of the in�nite

zero orders of sE −A−BF equals d if and only if the conditions (7)-(9)

(and (10) if kε = 0) are satis�ed:

degψ(s) + d =

kε∑
i=1

εi +

kσ∑
i=1

σi +

kq∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li (7)

ψ(s) � α1(s)α2(s)...αkl(s) (8)

d ≥
kq∑
i=1

qi +

kp∑
i=1

pi (9)

degψ(s) =

kσ∑
i=1

σi +

kl∑
i=1

li (10)

Pole assignment to the non-square systems

When dealing with the non-square systems (1), a natural question arising

here is under what conditions there exists a state feedback (2) yielding a

full rank pencil sE−A−BF . This seems to be a reasonable property of a

linear system (1) since it garanties the existence of (possible non-unique)

transfer function. Then, by analogue with square systems, the concept of

weak regularizability of (1) is introduced [4]. In particular,

• (E,A,B) is called a weakly (column or row) regularizable system if

the pencil sE − A − BF is of full column or row rank for some F

in (2).

Theorem 2 gives an answer to the posed question:

(a) (E,A,B) is row regularizable i� kε ≥ kq and kη = 0;

(b) (E,A,B) is column regularizable i� kq ≥ kε.

The assumption of weak regularizability of the rectangular systems

(1) plays a central role in the problem of pole assignment. In particular,

the weak regularizability guaranties that (at least) one of the minors of

largest possible order min{q, n} of sE − A − BF is not zero. Let the
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minors of P (s) ∈ Rq×n[s] of order min{q, n} be called dominant and be

denoted as dmP (s). Then, the greatest common divisor of all dominant

minors of sE−A−BF (hereafter denoted by gcddm[sE−A−BF ]) plays

a similar role as the determinant of the regular pencils. This means that

the �nite poles of the system (E,A + BF,B) are given by the zeros of

gcddm[sE −A−BF ]. Applying the conformal mapping and moving the

point s =∞ to w = 0, and using the concept of the NED, it follows that

the poles of the system are given by the zeros of gcddm D̃EF (w).

Pole Assignment Problem in Weakly Regularizable Systems:

Given a weakly regularizable system (1), a monic polynomial ψ(s), and

integer d > 0, �nd necessary and su�cient conditions under which there

exist matrices D̃ij satisfying (6) such that, using the w-notation, ψ̃(w)wd

will be a gcddm D̃EF (w) de�ned in (5).

Then, using the methods of linear algebra, mainly the Laplace expansion,

a series of theorems contributing to the pole assignment problem by state

feedback in the case of the non-square systems was established.

• In the case of the row regularizable systems the main result

is stated in Theorem 3 and describes the necessary conditions of

solvability to the problem of pole assignment.

Theorem 3. [2] Let a row regularizable system (1) (kε ≥ kq and kη =

0), a monic polynomial ψ(s), and an integer d ≥ 0 be given. If there

exists a matrix F ∈ Rm×n such that, using the w-notation, a ψ̃(w)wd =

gcddm
[
wẼ − Ã − B̃(w)F

]
, then the conditions (11)- (13) (and (14) if

kq = 0) are satis�ed:

degψ(s) + d ≤
kq∑
i=1

εi +

kσ∑
i=1

σi +

kq∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li, (11)

ψ(s) � α1(s)α2(s) · · ·αkl(s), (12)

d ≥
kq∑
i=1

qi +

kp∑
i=1

pi, (13)

d =

kp∑
i=1

pi (14)

with equality in (11) if kε = kq.
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• The problem of pole assignment to the column regularizable sys-

tems was solved (under the assumption that αi(s), the �xed invari-

ant polynomials of the system, have the real roots.) The conditions

of solvability are given in Theorem 5.

Theorem 5. [1, 2] Let a column regularizable system (1) (kq ≥ kε),

a monic polynomial ψ(s), and an integer d ≥ 0 be given. Then there

exists a matrix F ∈ Rm×n such that, using the w-notation, ψ̃(w)wd =

gcddm
[
wẼ − Ã − B̃(w)F

]
if and only if the conditions (15)-(19) (and

(20) if kε = 0) are satis�ed:

degψ(s) + d ≤
kε∑
i=1

εi +

kσ∑
i=1

σi +

kε∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li, (15)

ψ(s) �

kl∏
i=kq−kε+1

αi(s), (16)

d ≥
kε+kp∑
i=1

zi, (17)

degψ(s) ≤
kε∑
i=1

εi +

kσ∑
i=1

σi +

kl∑
i=1

li, (18)

d ≤
kε∑
i=1

εi +

kσ∑
i=1

σi +

kε∑
i=1

qi +

kp∑
i=1

pi, (19)

d ≤
kp∑
i=1

pi, (20)

with equality in (15) if kε = kq, and {zi}kε+kpi=1 denotes the set of the �rst

kε + kp indices of the non-decreasingly ordered set {qi}kqi=1 ∪ {pi}
kp
i=1, and

αi(s) := 1 for kl ≤ kq − kε.

• The necessary and su�cient conditions for the case when the max-

imal number of poles is to be assigned to a weakly regularizable

system are given in Theorem 6.
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• For a weakly regularizable system (1) it is possible to describe the

poles by just the one dominant minor of sE −A−BF . The corre-
sponding conditions are given in Theorem 4 for the row regular-

izable systems and in Proposition 5 for the column regularizable

systems.

The extension of the regularizability to its weak analogue is due to the

so-called NS blocks. In the case of row regularizable systems they generate

kε−kq nonproper indices. The column regularizable systems may possess

kq − kε NS q-blocks, and all the η-blocks belong to the NS blocks, too.

Analyzing the results of pole assignment problem some remarks are given

below.

• The value degψ(s) + d is the number of poles (multiplicities in-

cluded) of system (1). In the case of regularizable system this value

is constant (see (8)). The situation is di�erent as far as weakly

regularizable systems are concerned (see (11) and (15)).

• The maximal number of assignable poles of a weakly regularizable

system,

degψ(s)+d =

kr∑
i=1

εi+

kσ∑
i=1

σi+

kr∑
i=1

qi+

kp∑
i=1

pi+

kl∑
i=1

li, kr := min{kε, kq},

cannot be increased by its NS blocks.

• The number of poles that can freely be assigned to the prescribed

locations, say kc, in the case of weakly regularizable systems can be

di�erent from the similar number in regularizable systems. Particu-

larly, kc =
kε∑
i=1

εi +
kσ∑
i=1

σi for the regularizable systems, while for the

weakly regularizable systems kc ≤
kr∑
i=1

εi+
kσ∑
i=1

σi, kr := min{kε, kq}.

It follows that NS ε-blocks or q-blocks may lead to the cancellation

of all such poles (the case kc = 0).

• The quantities αi(s), qi, pi are unchanged by state feedback (2) in

the case of regularizable and row regularizable systems. While in

the column regularizable systems only kl − kq + kε smallest αi(s)

and kε + kp smallest indices of {qi}kqi=1 ∪ {pi}
kp
i=1 are not changed.
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5 The problem of pole structure assign-

ment

A recent result of the problem of pole structure assignment for the

square systems is stated by Loiseau and Zagalak in [22], where the authors

give the necessary conditions to that problem which are also su�cient in

some special cases.

Theorem 10. [22] Given a regularizable system (1), monic polynomials

ψ1(s) � ψ2(s) � . . . � ψr(s) and positive integers d1 ≥ d2 ≥ . . . ≥ dkd >

0. Let {hi}khi=1 stand for the non-increasingly ordered set of the positive

indices pi and qi with kh := card{hi} and k := kl + kp + kq. Let further

{ci}mi=1 denote the non-increasingly ordered set of the indices εi and σi,

m := kε + kσ.

Then, if there exists F in (2) such that the matrix pencil sE−A−BF
is nonsingular and its �nite and in�nite zero structures are given by the

polynomials ψi(s) and the integers di, respectively, the following conditions

hold:

ψi+m(s) � αi(s) � ψi(s), i = 1, 2, ..., k (21)

di+m ≤ hi ≤ di, i = 1, 2, ..., kh (22)
k+j∑
i=1

(deg βji (s) + max(hi, di+m−j)) ≤
k∑
i=1

(degαi(s) + hi) +
m∑

i=m−j+1

ci, j = 1, 2, . . . ,m (23)

kd ≤ kε + k̄p (24)

kd ≤ kq + k̄p (25)

and equality in (21) holds for j = m, where

βji (s) := lcm (αi(s), ψi+m−j(s)), (26)

k̄p := card{pi > 0}, and αi(s) := 1 for i > kl, ψi(s) := 1 for i > k + m,

hi := 0 for i > kh, di := 0 for i > kd.

Remark 1. The conditions (21) - (25) are also su�cient if:

• {pi} = ∅ or pi = 0 or {pi} is a subset of {di}, see [22];
• rank E = n, see [36];
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• rank [sE −A,−B] = q = n ∀s ∈ C ∪∞, see [18];

• rank E = n and rank [sE −A,−B] = q = n ∀s ∈ C, see [31].

Pole structure assignment to the non-square sys-

tems

A possibility to assign the one nonzero dominant minor of sE −A−BF
to describe the poles of the closed loop system implies that the regular

subpencil of sE − A − BF , which corresponds to that prescribed dom-

inant minor, will de�ne the pole structure of the system. Taking this

into account, the result of the problem of pole structure assignment by

state feedback known for the square systems was extended for the case of

weakly regularizable systems (1) in the following way.

Theorem 11. Given a weakly regularizable system (1), monic polynomi-

als ψ1(s)�ψ2(s)�. . .�ψr(s) and positive integers d1 ≥ d2 ≥ . . . ≥ dkd > 0

such that {pi}k̄pi=1 ⊂ {di}
kd
i=1, k̄p := card{pi > 0}. Let {q′i}kri=1 be a subset

of {qi}kqi=1 and {ε′i}kri=1 be a subset of {εi}kεi=1, where kr := min{kε, kq}. Let
further {hi}khi=1 stand for the non-increasingly ordered set of the positive

indices pi and q′i, kh := card{hi}, and k := kl + kp + kr. Let further

{ci}mi=1 denote the non-increasingly ordered set of the indices ε′i and σi,

m := kr + kσ.

Then, there exists F in (2) such that the �nite and in�nite zero struc-

tures of sE−A−BF are given by the polynomials ψi(s) and the integers

di, respectively, if the following conditions hold:

ψi+m(s) � αi(s) � ψi(s), i = 1, 2, ..., k (27)

di+m ≤ hi ≤ di, i = 1, 2, ..., kh (28)
k+j∑
i=1

(deg βji (s) + max(hi, di+m−j)) ≤
k∑
i=1

(degαi(s) + hi) +

m∑
i=m−j+1

ci, j = 1, 2, . . . ,m (29)

kd ≤ kr + k̄p (30)

and equality in (29) holds for j = m, where βji (s) are de�ned in (26),

αi(s) := 1 for i > kl, ψi(s) := 1 for i > k+m, hi := 0 for i > kh, di := 0

for i > kd.
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6 Controllability

The concept of controllability of the system (1) belongs to the most im-

portant ones in control theory. It describes our ability to change the

behavior of the system by means of the control inputs. Therefore, it re-

lates to the pole assignment problems by state feedback. Particularly, any

controllable pole can be shifted to any prescribed location by choosing an

appropriate state feedback gain. There are two main notions of control-

lability of the system (1). They are marked as R - and V- controllability

in the text since they are also called as the controllability "in the sense of

Rosenbrock" and "in the sense of Verghese", respectively.

Controllability is well studied for the case of square systems using

di�erent approaches (frequency-domain, time-domain, geometrical etc.,

see [6, 7, 19, 30, 31, 34, 35].

In the time domain, controllability is closely connected with the

notion of reachability. Reachability of the system is the ability to get

from one state to another state. Controllability is usually de�ned either

of the following properties:

• reachability of every state from any state (R-controllability) [6, 35];

• reachability of zero (V-controllability) [19, 30].

R-controllability describes the ability to control the state trajectory of the

whole system, while V-controllability do not take that of the non-dynamic

subsystem (which associates to the blocks of in�nite elementary divisors

of order µi = 0) into the consideration.

In the frequency domain, the concept of controllability is closely

tied with the notion of irreducibility. But at �rst let us begin with the

free-response modes (i.e. when u(t) = 0) of the system. In the square

systems (1) these modes are given by the zeros of sE −A.
The modes of the system which can not be in�uenced by control inputs

(decoupled from inputs) are called the input decoupling zeros [31] and

associate to the (�nite and in�nite) zeros of
[
sE−A, −B

]
. If the pencil[

sE − A, − B
]
is of full row rank for all �nite and in�nite s then the

system has no input decoupling zeros. This means that all its poles are

controllable and the system is said to be strongly controllable [34] (V-

controllable).
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• A system (1) is irreducible if and only if

rank
[
sE −A, −B

]
= q, ∀s ∈ C ∪∞. (31)

There is another way to treat the pole at s = ∞ (due to Rosenbrock)

which leads to consider the modes of the non-dynamic subsystem as the

in�nite poles of (1). Then, irreducibility is equivalent to R-controllability.

That is to say, controllability of the regularizable systems coincide

with

• irreducibility in the sense of Rosenbrock (R-controllability);

• irreducibility in the sense of Verghese (V-controllability).

Controllability of the non-square systems

Controllability of the non-square systems (1) was considered to be adapted

to the task of problem of pole assignment by a proportional state feedback.

Time-domain approach

The non-square systems are no longer regularizable, hence they loose such

an important property as the uniqueness of its solution. In particular, this

occurs in the systems with q < n. The "measure of non-uniqueness" is

gathered by the so called internal degree of freedom [3] of the system.

This term represents variables of the state which are undetermined by

the equation (1) and assumed to be described by some free functions.

Then, which of the following properties of the system:

• the existence of the proper trajectory (which is not constrained by

the equation (1)),

• the existence of the proper control (which is not guaranteed by the

equation (1)),

is emphasized the results on reachability, and consequently, controllability

follow. For example, the system can be considered to be reachable just

due to its internal degree of freedom. This is the main divergence of

the approaches to controllability for the non-square systems in [3, 14].

Therefore, the state uniqueness property, which characterizes the fact that
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state trajectories are uniquely �xed by the initial condition and input, was

involved directly into the concepts of R- and V-controllability for the non-

square systems. In particular,

• A system (1) is said to be V-controllable if for every state xT ∈ Rn

there exists an input u(t) and a �nal time T such that there exists a

unique state trajectory x(t) on [0, T ] with x(0) = xT and x(T ) = 0.

Using the introduced de�nitions, the conditions for the system to be R-

controllable and V-controllable were established in Theorems 17, 18,

respectively.

Theorem 18. [3] A system (1) is V-controllable if and only if (the fol-

lowing condition are equivalent):

a).

(kq ≥ kε) ∧ (kl = 0) ∧
(
(kp = 0) ∨̇ (pi = 0)

)
∧(

(kq = 0) ∨̇ (qi = 0)
)
∧
(
(kη = 0) ∨̇ (ηi = 0)

) (32)

b).

q̄ ≥ n, (33)

ImĒ + ImB̄ + ĀKerĒ = Rq̄, (34)

Im[sĒ − Ā] + ImB̄ = Rq̄ ∀s ∈ C, (35)

where [Ē Ā B̄] ∈ Rq̄×n is of full row rank matrix such that

[E A B] =

[
Iq̄
Y

]
[Ē Ā, B̄], (36)

with Ē, Ā ∈ Rq̄×n, B̄ ∈ Rq̄×m, Y ∈ R(q−q̄)×q̄.

The conditions (33)-(35) can be written in a more condensed form,

q̄ ≥ n, rank
[
sĒ − Ā B̄

]
= q̄ ∀s ∈ C ∪∞. (37)

Frequency-domain approach

In the non-square systems the free-response modes of the system are not

given just by the zeros of sE − A. In particular, using the introduced

above terminology, the modes corresponding to the NS blocks of sE −A
don't associate to the poles of the system.
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By (37), the concepts of irreducibility (in the sense of Verghese) and

V-controllability are still equivalent for the systems satisfying q̄ ≥ n. In

other case these concepts don't coincide. Let us consider this point in

more details.

By Theorem 18, a column regularizable system (kq ≥ kε) is not V-

controllable i� (kl 6= 0) ∨ (pi > 0) ∨ (qi > 0) ∨ (ηi > 0) for some

i (∨ means OR). Its NS blocks (kq − kε of the indices qi > 0 and the

indices ηi > 0) admit only the zero solution. Hence, the free response

modes given by these indices can be considered to be called the constrained

modes. Their presence implies non-irredicibility of the system (the non-

coprimeness of sE − A and B). Therefore, for the column regularizable

systems the meaning of irreducibility is the same as for the square systems

- the absence of the input decoupling zeros or equivalently the absence of

the uncontrollable modes.

The presence of internal degree of freedom in the systems with q < n

(in the row regularizable systems) implies the existence of free response

modes which are not �xed by the initial condition and decoupled from the

input. They were called the non-�xed modes, and correspond to kε − kq
non-proper indices.

Then, the following de�nition of the V-controllable system in the fre-

quency domain is consistent with that in the time domain:

• The system (1) is V-controllable (strongly controllable) if it is irre-

ducible and has no non-�xed modes.

The state uniqueness property, which was involved directly into the the

concept of controllability for the rectangular systems (1) in the time-

domain, sounds here as the absence of the non-�xed modes.

Controllability indices

The concept of controllability of the system (1) can also be considered

using the notion of reachability and controllability indices. The space

of all states of the system which are reachable from zero is called the

reachable space. Let it be denoted by R. It is shown in [25] that for the

square systems the reachability indices are dimensions of singly generated

reachability subspaces into which the reachable space of the system R can

be split, while the controllability indices are related to a splitting of ER.
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Let εi denote the column minimal indices of the pencil [sE − A, − B]

and φi the column minimal indices of the pencil Π[sE − A], where Π is

a maximal left annihilator of B. Then, the geometric characterization

of the indices mentioned above corresponds to the following polynomial

characterization [25]:

• the reachability indices, {ri} are given (modulo ordering) by {ri} =

{1 + φi};

• the controllability indices, {ci} are given (modulo ordering) by

{ci} = {εi | εi 6= 0}.

Theorem 19. [25] A regularizable system (1) is V-controllable (R-control-

lable) i� the condition a) (the condition b), respectively) holds:

a)
∑
i

ci = n− dim KerE;

b)
∑
i

ri = n.

Controllability indices for the non-square systems

Concerning the non-square systems, the above characterization of the in-

dice doesn't always bring the same information as in the case of square

systems. In particular, the lack of correspondence appears in the sys-

tems with internal degree of freedom. The reachability and controllability

subspaces of the system which are generated by its internal degree of free-

dom start in KerE and not in E−1ImB/KerE in opposition with the other

subspaces which are directly generated by some input [3].

In fact, it can be easily noted that the condition a) of Theorem 19

implies irreducibility of (E,A,B) (in the sence of Verghese), while the

condition b) - irreducibility in the sense of Rosenbrock.

Hence, the extension of the notion of controllability and reachabil-

ity indices for the rectangular systems conformably with the problem of

pole assignment can be done just in the case of the column regularizabe

systems.
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7 Conclusions

Thesis deals with rectangular descriptor systems of the form (1). In par-

ticular, the e�ect of a proportional state feedback (2) upon the system was

investigated. The main problems under consideration are the problems

of pole and pole structure assignment for the non-square systems (1) by

state feedback. These problems are of signi�cant value in control theory

since they aim at shaping the desired closed-loop system response.

In the rectangular systems, the concept of weak regularizability-the

assumption on the existence of a state feedback gain F such that the

pencil sE − A − BF is of full row or column rank - was introduced.

Accordingly, the rectangular systems are subdivided into the row and

column regularizable systems, see Theorem 2. Weak regularizability is a

reasonable property of (1) and is the extension of reguarizability known

for the square systems.

Then, the following results were reached for the problem of pole as-

signment in the case of weakly regularizable systems (1):

• kη = 0 and kε ≥ kq - Theorem 3 (necessary conditions) and Theo-

rem 4 (su�cient conditions for the particular cases)

• kq ≥ kε - Theorem 5 (necessary and su�cient (under assumptions

of reals roots of the �xed invariant polynomials) conditions)

The result of pole structure assignment known for the square systems

was extended for the rectangular systems in the special cases. In particu-

lar, the cases when the speci�c subpencil of sE−A−BF is to be assigned

to describe the pole structure of the closed loop system have been consid-

ered. As a result, the su�cient conditions for that cases were established

for the systems satisfying

• kη = 0 and kε ≥ kq or kq ≥ kε - Theorem 11 (su�cient conditions

for the special cases)

Two notions of controllability of the system (1) occurring in the lit-

erature, which were termed as R - and V - controllability, were studied

through the time and frequency domain approaches. These concepts were

adapted to the problem of pole assignment to the system (1) by a pro-

portional state feedback (2). The corresponding conditions are given in
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terms of feedback invariants as well as in geometric terms, see Theorem

17 (R - controllability) and Theorem 18 (V - controllability). In fact,

the properties describing the square systems to be controllable through

the frequency-domain such as the absence of input decoupling zeros, ir-

reducibility, are not well �tted for the general case of (1). This is caused

by that rectangular systems, in general, posses some special features like

the existence of the so called non-�xed and constrained modes.

The notions of controllability indices are conformable extended just

for the column regularizable systems.

7.1 Suggestions for future research

Some open questions in the problems of pole and pole structure assign-

ment to the rectangular systems (1) by the proportional state feedback (2)

still exist and could be considered for investigation in the future. Namely:

• poles assignment problem - give su�cient conditions in the case of

row regularizable systems ( kη = 0 and kε ≥ kq);

• pole structure assignment problem - there is no complete solution

in the case of column regularizable systems (kq ≥ kε);

• the results of [9] are somewhat implicit and obtained using another

approach as that of [22] (which was used here) and stated in di�erent

notations - their restatement can be useful for the application in

control.
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