
WEDA - NEWARCHITECTURAL STYLE FOR
WORLD-WIDE-WEB ARCHITECTURE

Report of the PhD Thesis

Study programme: P – Electrotechnology and informatics
Study branch: V – Technical Cybernetics

Author: Ing. Jitka Hübnerová
Supervisor: doc. RNDr. Pavel Satrapa, Ph.D.

Scope of work:
Number of pages:
Number of figures:
Number of tables:

Liberec

Abstract

In this work, the proposal of duplex event-based architectural
style is described and tested. This style helps with usabil-
ity, processing and performance of web services especially in
conjunction with monitoring and alerting applications or ge-
ographic systems. This work has a contribution in the area of
software architectures, formal modelling and performance en-
gineering.

Thesis has theoretical and practical parts. I first give a brief
review of SOA 2.0, EDA and ESB ensemble theory. Then I
present a detail analysis of our Weda architecture style and its
enhancements and discuss for its essence, characteristics, ap-
plicable conditions, applicable scope and application domain.
With Weda, service oriented architecture can evolve to event-
driven-architecture, while preserving capabilities to communi-
cate over the World-Wide-Web. For this purpose we will in-
troduce new Web-Event-Driven-Architecture (Weda) architec-
tural style, protocol and developed API, which can be estab-
lished easily into existing web services stack, so millions of web
services can be extended and are not forced to be completely
rewritten.

As tests show, impacts of the Weda architectural style is better
throughput for web services and benefit of possibility to ex-
tend communication to duplex level with client contract with-
out needing the client to publish a public endpoint over the
Internet. Thanks to this discovery, we will describe a Weda’s
event processing capabilities such us complex event processing
and we will bring them to event propagation patterned WWW
ESB proposal, which can be integrated into HTTP servers and
as well to SaaSmodel of public clouds. Wewill mention a prac-
tical use case scenario. Work provides quality attributes mea-
surements conducted on our implementation.Weda is modeled
as a network of timed automata which results in a compact and
intuitively appealing specification and provides its formal val-
idation and verification.

Keywords

software architecture, web services, SOA 2.0, event processing,
web socket, sensor web, GIS, performance, timed automata

2

Abstrakt

V této disertační práci je popsán a otestován návrh du-
plexního událostně řízeného architektonického stylu. Tento
styl rozšiřuje použitelnost webových služeb a zlepšuje jejich
výkon a zpracovávání, a to zvláště ve spojení s monitorovacími
a pohotovostními aplikacemi nebo geografickými systémy.
Práce přispívá zejména do oblasti softwarových architektur,
formálního modelování a řízení výkonu.

Disertační práce má teoretické i praktické části. Nejprve je
předložen přehled teorie architektur SOA 2.0, EDA a ESB.
Následně je detailně analyzována koncepce architektonick-
ého stylu Weda a jeho rozšíření, diskutována jeho podstata,
charakteristiky, podmínky, rozsah a aplikační doména. S
použitím architektonického stylu Weda se SOA snadno rozšíří
na událostně řízenou architekturu, a to při zachování schop-
nosti komunikovat přes WWW. Za tímto účelem práce před-
stavuje jak specifikaci tohoto stylu, tak protokol a v neposlední
řadě vyvinuté API, které může být snadno zařazeno do zásob-
níku vrstev stávajích služeb tak, že miliony služeb mohou být
pouze rozšířeny bez nutnosti jejich přeprogramování.

Jak ukazují testy, dopadem architektonického stylu Weda je
vyšší propustnost webových služeb a možnost rozšíření ko-
munikace na obousměrnou aniž by byl klientský uzel nu-
cen publikovat veřejný port. Dále práce popisuje, jak lze do
globálně přístupného informačního systému zahrnout schop-
nost komplexního zpracovávání událostí (samostatný obor) a
transformuje tento návrh do návrhu ESB sběrnice s vzorem
propagace událostí, jejíž běh je možný přes WWW. Je tak
integrovatelná do HTTP serverů a také SaaS modelu veře-
jných cloudů. Prakticky popíšeme a ukážeme případ užití na
příkladu senzorových webů. Práce nám poskytne výsledky
měření různých atributů kvality získaných vlastním měřícím
programem na vlastní implementaci. Tyto výsledky jsou an-
alyzovány s použitím teorie pravděpodobnosti a matematické
statistiky. Weda styl je v práci formálně modelován, a to jako
síť časových automatů, čímž práce zaručuje jeho kompaktní
specifikaci, formální validaci a verifikaci.

Klíčová slova

sw architektury, webové služby, SOA 2.0, řízení událostí, web
socket, senzorový web, GIS, měření výkonu, časové automaty

3

Contents

1 Introduction 5
1.1 Problem statement and motivation 5
1.2 Contribution of dissertation . 6

1.2.1 Contributions in the area of software architectures 6
1.2.2 Contributions in the area of formal modelling 6
1.2.3 Contributions in the area of performance engineering . . 6

1.3 Organization . 6

2 Informal description of Weda architectural style 8
2.1 Overview . 8
2.2 Comparison of Web services architectural styles 9

3 Model based analysis and formal verification 11
3.1 Background . 11
3.2 Modeling the Weda architectural style 12
3.3 Verification . 13

4 Experimental systems and case studies 16

5 Distribution of response time instability 18
5.1 Methods and settings . 18
5.2 Performance analysis . 19
5.3 Hypothesis checking technique and Goodnes-Of-Fit analysis . . 20
5.4 Performance simulation . 27
5.5 Conclusion . 28

6 Performance testing 29
6.1 Overview . 29
6.2 Measurement results . 29
6.3 Conclusion . 33

7 Conclusions and future work 35
7.1 Summary . 35
7.2 Future work . 36
7.3 Publications . 37
Bibliography . 39

4

. Introduction

. Problem statement andmotivation

Web services are increasingly gaining acceptance as a framework for facilitat-
ing application-to-application interactions within and across enterprises. SOA
is widely used architecture mainly because of spread of web services. SOA
2.0 is theoretical concept which is not practically used today mainly because
of technological and security limits. As WebsocketAPI becomes W3C and
browser standard in the near future, we stay in front of the task of using new
communication channel for SOA 2.0 (event-driven SOA) and try to create
more decoupledWorld-Wide-Web based distribution system. The world of ap-
plication integration over the public Internet is very conservative, and it is logi-
cal output of number of interested sides, which have to communicate with each
other. From this assumption we come out to the concept of Weda. Weda tries
to deal with the trend of growing amount of data transferred via WWW from
the application architecture point of view and growing number of functionally
coupled nodes in the network. Presented style has been strictly designed to
fill a gap in layered structure of web service’s protocol stack enabling a new
features whilst preserving the existing. Such a concept is backward compati-
ble and has bigger chance for success. It is also capable for dealing with new
hosting environments (public clouds) and extensions such as possibility to ex-
tend communication to duplex level with client contract without needing the
client to publish a public endpoint over the Internet. Programming-language
specific API’s can be built to establish a Weda into the stack.

Web-service
provider

(server)
WedaAPI

(client)
WedaAPI

Consumer

Websocket /
Weda

subprotocol

HTTP

Figure 1.1: Blackbox overview of Weda

A motivation use-case for such a solution is building the part of complex
GIS systems and/or public sensor web. Simply, any alerting or monitoring
solution can benefit from Weda architectural style.

5

. Contribution of dissertation

.. Contributions in the area of software architectures
Themain objective of thesis is to provide a practical solution for building SOA
2.0 based distributed systems which are interconnected via World-Wide-Web
and deployable to Cloud. Second objective is to find its advantages and dis-
advantages and opportunities by dealing with its performance, scalability, ex-
tensibility and internal issues. When given a nameWeda, a coordinated set of
architectural constraints becomes an architectural style. Informal descrip-
tion can be translated to RFC document.

.. Contributions in the area of formal modelling
Another goal is to provide a methodology on how to create a checkable model
and its formal verification of Weda components and Websocket subprotocol.
Websocket protocol as new protocol isn’t formally modeled at the moment.
One can use the results to model another subprotocol specification or Web-
socket extension. Results prove that the system of Weda components is viable
and creates a compact and intuitively appealing specification.

.. Contributions in the area of performance engineering
Third objective is to measure referential implementation and experimental sys-
tem. One can use these results to ensure that his adoption of system is efficient
and scalable. While no public tool is available for such performance analysis, I
developed a multithreaded load tester SW tool for dealing with the task. Mea-
surement results were used to find a methodology for predicting a RTT for
any WebSocket subprotocol and to provide a random number generator that
simulates the results for other theoretical studies. Work presents the results
for Weda architecture style and its subprotocol.

. Organization

Original thesis document is designed to enable us to do comprehensive picture
of the whole architectural style. We will talk briefly about the conceptual and
also about the technical infrastructure and we will bring practical application
view of the design. This report document gives a comprehensive overview and
skips details and some chapters (e.g. adopting existing applications to the
API, API implementation description or background research). The report is
organized in the following way:

• Chapter 2 contains overview part of informal description of the architec-
tural style. In thesis, the details of each component are given. In future it

6

can be translated to RFC draft and used for dealing with implementation
issues.

• Chapter 3 presents a framework that can be used to model and verify
Weda architectural style formally. Main automata are described here.

• Chapter 4 show experimental systems that were built upon the implemen-
tation.

• Chapter 5 contains an application of theory of probability and mathe-
matical statistics to study performance issues. Input data were gained
from long running test and the results are used to find a prediction for-
mula of system’s response time.

• Chapter 6 presents results of selected of measurements that compare
performance quality attributes of Weda against SOAP and REST sys-
tems.

• Chapter 7 concludes the lessons learned and asks questions for future
work.

7

. Informal description ofWeda architectural
style

. Overview

An ontology is a data model that represents a set of concepts within a domain
and the relationships among those concepts. The semantics of WWW-based
architecture ontology is defined as follows [2], [7]:

EAType ⊆ Infrastructure(t) ∪Management(t) ∪ Process(t)∪
Configuration(t) ∪ Component ∪ Connector ∪ Port ∪ Role ∪ QA (2.1)

in which, EAType denotes enterprise architecture type, for exampleWeda. The-
sis describes in detail main architectural ontology entities – infrastructure,
management, service, service consumer and data – constrained in their rela-
tionships in order to achieve a desired set of architectural properties.

application client server host process

service host

"legacy 2" service instance per call

service host

application client

session B

session managersession A
EDA manager service proxies

weda endpoint,
session B

service host
callback service proxy instance

service proxy instance

"legacy" service proxy instanceap
pli

ca
tio

n
bu

sin
es

s l
ay

er

pox endpoint

soap endpoint

"legacy" service
instance per session

"legacy" service proxy instance

application client

weda endpoint,
session A

wsdl resources

weda endpoint,
session Csession C

some async service proxies
service proxy instance

callback service proxy instance

async service instance
per session

Event processing Services (CEP)

callback contract
service contract

rest endpoint

soap/
rest/
pox

service
contract

reply
channel
 (HTTP)

request
 channel
 (HTTP)

ap
p.

 B
L

"legacy 2" service instance per call

"legacy 2" service instance per call

"legacy 2" service instance per call

"legacy 2" service instance per call"legacy 2" service instance per call

B
L

Figure 2.1: High-level process view of Weda infrastructure

8

. Comparison of Web services architectural styles

We can identify three classes of Web services:

• REST-compliant Web services, in which the primary purpose of the ser-
vice is to manipulate XML representations of Web resources using a uni-
form set of stateless operations

• RPC-compliant Web services, in which the service may expose an arbi-
trary set of operations.

• WEDA-compliant Web services, in which the service can use asynchron-
nous message passing which can provide us eventing behaviour as well
as call & return.

In table 2.1 I compare attributes of identified styles.

9

Table 2.1: Comparison of Web services architectural styles

attribute WEDA-style REST-style RPC-style
architecture SOA2.0 (event-based

SOA)
SOA SOA

distributed
system type

hybrid (message passing
and call / return)

call / return call / return

addressability multiple endpoints
(address, client ad-
dress+identifier) per
service (clients, server)

unique URI address per
resource

one endpoint (ad-
dress, contract) per
service

common
transport

HTML5 WebSockets HTTP HTTP

state statefull stateless stateless
flow con-
trol

asynchronnous synchronnous synchronnous (over
common transport)

process
commu-
nication
models

one-to-one, one-to-many,
many-to-many

one-to-one one-to-one

latency bad (without specific flow
control mechanism) or
best with admission and
flow control

best good

throughput best bad bad
instance
context

per session per call per call (over com-
mon transport)

scalability bad for horizontal, best
for vertical scaling, best in
terms of concurrent clients

good good

coupling loose (only event type
definitions in duplex
contracts)

functionally tightly cou-
pled (MIME types in
self-descriptive resource
representations)

functionally tightly
coupled (operations
and data types in
contract)

data inter-
face

inherited (no restriction) generic (e.g. HTTP
verbs, MIME)

service description
(e.g. WSDL)

common
data format

inherited (no restriction) HTTP resource repre-
sentation, XML, JSON

SOAP

deployment
topologies

enterprise service bus hub and spoke (central-
ized)

hub and spoke (cen-
tralized)

coordination ESB’s native functions for
orchestration and choreog-
raphy, no scheduler

resource-oriented work-
flows (theoreticall -
atom, rss, dynamic
hyperlinks in practice)

service-oriented
workflows, scheduler
required

10

. Model based analysis and formal verifica-
tion

. Background

Some common languages for system representation are PROMELA for SPIN
or temporal logic formulas. K.I.F. Simonsen and L.M.Kristensen did a basic
modeling of Websocket protocol using Petri Nets [4]. UPPAAL is a tool suite
for validation and symbolic model-checking of real-time systems and uses a
subset of CTL (computation tree logic i.e. class of temporal logic) as the basis
for the query language.Expressive and popular formalism for modeling real-
time systems is known as Timed automata [6]. SPIN can be used for untimed
and UPPAAL for timed systems.

Definition 1 (Timed automaton) is a tuple A = (Q, q0,
∑

,E, I,C) where
Q is finite set of discrete states (locations)
q0 ∈ Q is the initial discrete state∑

is set of events
C is finite set of clock
E ⊆ Q× B(C)×

∑
×2C × Q is set of timed edges

where B(C) is set of boolean clock constraints involving clocks from C and 2C is
powerset of C

I : Q → B(C) is a function associated with each discrete state Q. System can remain
in the same location as long as the invariant is true. Invariants I are downwards closed,

Table 3.1: Correspondence between CTL and UPPAAL query language syntax

CTL Formula UPPAAL form

A□ φ(A♢φ) A[] φ (A <> φ)
E□ φ(E♢φ) E[] φ (E <> φ)
φ ⇝ ψ φ –> ψ
not φ not φ
φ and ψ φ and ψ
φ or ψ φ or ψ
φ ⇒ ψ φ imply ψ

11

in the form: x ≤ n, where n is natural number and x ⊂ C is clock variable.
We shall write q

g,a,r→ q′ when ⟨q, g, a, r, q′⟩ ∈ E.

Definition 2 (Guards) Let C be a set of real valued clocks and I a set of integer valued
variables. A guard g over C and I is a formula generated by the following syntax

g ::= c|g ∧ g,where c ∈ (Cc(C) ∪ Ci(I))
Cc is set of all clock constraints over C, Ci is set of all integer constraints over I.

B(C, I) stands for the set of all guards over C and I.

In order to study compositionality problems we introduce a parallel com-
position of timed automata. In order to get the kind of parallel composition we
want, we have to introduce the notion of co-actions, which is done by defining
a synchronization function τ.

Definition 3 (Synchronization Set) Let Act be the set of visible actions (a,b...range
over Act).

Let τ ⊆ Act× Act be a set of pairs such that:

⟨a, b⟩ ∈ τ ⇒ ⟨b, a⟩ ∈ τ for all a, b ∈ Act

Definition 4 (Parallel Composition). Let A1, A2 be two timed automata. Then, the
parallel composition (A1|A2) is a timed automaton ⟨Q, q0,

∑
,E, I,C⟩where (q1|q2) ∈ Q

whenever q1 ∈ Q1 and q2 ∈ Q2 , q0 = (q1,0|q2,0). The set of edges E is defined as follows:

• (q1|q2)
g,τ,r−−→ (q′1|q′2) if (q1

g1,a1,r1−−−−→ q′1) ∧ (q2
g2,a2,r2−−−−→ q′2) ∧ (g = g1 ∪ g2) ∧ (a1, a2 ∈

τ) ∧ (r = r1 ∪ r2)

• (q1|q2)
g,τ,r−−→ (q′1|q2) if (q1

g,τ,r−−→ q′1)

• (q1|q2)
g,τ,r−−→ (q1|q′2) if (q2

g,τ,r−−→ q′2)

Note that parallel composition is commutative and associative.

Model checking tools face a combinatorial blow up of the state-space, com-
monly known as the state explosion problem.

. Modeling theWeda architectural style

Weda model consists of three parts: Server (with Weda gateway), Client and
Weda Channel. Modeling an entity such as a Client or Server is a complex and
time consuming task. We have decided to keepmore abstraction levels tomake
model a little bit easier to understand and also to decrease the number of reach-
able states because of state explosion problem. For example no client proxy
or Weda wire layer was modeled at the client group. On the other side, server
model is a little bit more complicated to showmain tasks to be performed when
implementing the style. To make the understanding of the idea behind the
implementation easier, the Server model has been divided into four different
sub-partitions as follows:

12

• WedaGateway_HostInitialization

• WedaGateway_SessionChannelListener

• WedaGateway_SessionChannelManager

• WedaGateway_SessionChannelWire

Weda channel model is described by WedaChannelInput and
WedaChannelOutput timed automata and Client is modeled via
WedaGateway_SessionChannelFactory and Client timed automata. We can
find automata descriptions and code listing in the original document.

WS_ClientConnectionCreated

WS_OpenHandshakeValidated

WS_TcpConnectionAccepted

Wait

NotReady

closedWsConnection[wscon]?
removeFromWsConList()

wsconcnt >= ClientCnt
wedaErrServerError[wscon]!

validSubprotocol == true &&
wsconcnt < ClientCnt

newWsConnection[wscon]!

addToWsConList()

validSubprotocol == false
wedaErrClientError[wscon]!

wsOpenHandshake[wscon]!
wsValidateSubprotocol()

wsOpenHandshake[wscon]?

connect[wscon]?

srvReady?

Figure 3.1: Weda Gateway Session Channel Listener model.

. Verification

The finite model achieved after the modeling stage is still complex with re-
spect to the memory cost. Thus, a restriction to a small number of processes is
required in order to check correctness with UPPAAL.We restricted ourselves
up to 50 client processes. Despite that, some properties are difficult to check
even for one client as it requires a lot of memory space as well as time such
as safety properties. For a safety properties we have created simplified model
where one client is connecting to the server only. Here I list some properties

13

Ready

NotReady

WEDA_Wire_RouteToChannelByLogicalEndpoint

WEDA_ValidateFrame

WS_DataFrameReceived

e : id_message
flowControlErr == false
enqueue(e)

abortChannels[wscon]?

flowControlErr == true

wedaErrChannelNotFound!

incomingWedaMsg[chanid]!

nextFrame[wscon]?

wedaChannelsOpened[wscon]?

validate()

Figure 3.2: Session Channel Wire model.

has been proved to be satisfied. Next reachability property checks that client
can successfully reconnect and send messages again.

E♢(Client(0).turns > 0&& Client(0).Opened&&

WedaGateway_SessionChannelWire(0).Ready&& Client(0).noRequest > 0) (3.1)

Next liveness property verify that every request can obtain its response.

A♢ Client(0).noRequest > Client(0).noResponse imply Client(0).Receiving
(3.2)

A♢WedaGateway_SessionChannelFactory(0).WS_OpeningTcpConnection
imply

WedaGateway_SessionChannelListener(0).WS_TcpConnectionAccepted
(3.3)

Previous formula verify that opening the WS connection by client leads to be
accepted by the server.

E♢WedaGateway_SessionChannelWire(0).Ready&&

Client(0).noRequest < Client(0).cntMsg
imply WedaGateway_SessionChannelWire(0).WS_DataFrameReceived (3.4)

Previous formula confirms that the system will try to send all messages in the
cycle and they are to be received by the Weda server.

14

MEPDetected

NotReady

Ready

WEDA_ResponsePrepared

ServiceHost_Proccess

WEDA_RoutingToServiceOperation

WEDA_MessageReceived

abortChannels[sessionid]?

RequestReply == false

RequestReply == true
CorrelateResponse()

detectMep()

deserialize()

notifyWedaMsg[sessionid]!

operationFound == true

incomingWedaMsg[sessionid]?
dequeue()

wedaChannelToOneLogicalEndpointOpened[sessionid]?

Figure 3.3: WedaChannelInput model

Ready

NotReady

WEDA_SendingDataframe

abortChannels[sessionid]?

serialize()

notifyWedaMsg[sessionid]?

nextFrameOut[sessionid]!

wedaChannelToOneLogicalEndpointOpened[sessionid]?

Figure 3.4: WedaChannelOutput model.

15

. Experimental systems and case studies

Author implementedWeda architectural style into alpha version of Weda API,
described in the thesis. With this API two experimental systems were built.
Experiences and the data obtained from these experiments were used for cal-
ibrating the model. The use case for the experiments is building web based
geospatial system based on standards of SWE technology that enables the im-
plementation of Sensor Webs. Because of technology limitations, this web
service stack cannot be used for real-time monitoring and alerting in particu-
lar. On figure 4.1 one can see a context model of experimental systems that
were built. In thesis we describe the server side of both experimental systems,
thin client side and thick client side (load testing tool used for benchmarking).
Whole server’s solution consists of 13 projects with number of classes.

OGC
Sensor

Observation
Service

(server)
Weda API

0.1
ChannelStack

(client)
WedaAPIThin

client

Weda
subprotocol

HTTP

Thick
client/

load tester
tool

(client)
WedaAPI

Weda
subprotocol

HTTP

(server)
WedaAPI

0.2
Event

Processor

.

OGC
Sensor

Alert
Service

Observations
Data Model

(ODM)
Version 1.1

Version 1.0: Core, Enhanced extensions:
- GetCapabilities, GetFeatureOfInterest
Version 1.1: Core, Enhanced extensions:
 - DescribeSensor, GetObservation, GetObservationById
Version 2: Transactional extension:
- InsertSensor, UpdateSensorDescription, DeleteSensor, InsertObservation

D
at

a
ac

ce
ss

 la
ye

r

CEP Engine
NEsper

Client-side Server-side

Figure 4.1: Overview of experimental systems

16

Figure 4.2: Experimental system with thin client interface

Figure 4.3: Experimental system with thick client interface

17

. Distribution of response time instability

. Methods and settings

The response time is the most visible performance index to users of computer
systems. End-users see individual response times, not the average. Therefore
the distribution of response times is important in performance evaluation and
capacity planning studies. The inability of the webservices involved to guaran-
tee a certain response time and performance and the instability of the commu-
nication medium can cause timing failures, when the response time or the tim-
ing of service delivery (i.e., the time during which information is delivered over
the network to the service interface) differs from the time required to execute
the system function. In result some users may get a correct service, whereas
others may perceive incorrect services of different types due to timing errors.
These timing errors can become a major cause of inconsistent failures usually
referred as the Byzantine failures [5]. Uncertainity of performance can be ref-
ered as the unknown, unstable, unpredictable, changeable characteristics of
measured system. Issues of response time analysis are becoming more impor-
tant as models are developed that make explicit predictions about the shape of
the response time distribution. Results for such a measuring can be used for
making decision about the sytem architecture or configuration such as setting
timeouts. For example today’s knowledge in the area shows us that the RTs
are not normally distributed [9] and they are highly skewed.

We measured the request processing time (RPT) (by a service) and the net-
work round trip time (RTT), i.e. response time RT = RPT + RTT in store
and forward devices (RFC 1242). In our work we followed methodologies de-
scribed at [8, 9, 3]. Then we investigated how instability changed during 3
hours. With collected data we found the way to predict and represent perfor-
mance uncertainity of Weda by employing one of the theoretical distributions,
used to describe such random variables like Weda’s response time.

We measured response time instability of Weda by invoking number of re-
quests from the thick client application and collecting the responses with meta-
data about server processing times. The load generator was hosted on 4xIntel
Xeon running at 2.5 Ghz, Windows 8, 2GB of RAM, 1Mbps downlink network
connection and 100Kbps uplink network connection. The location of the load
generator was 4 networks hops away from the server hosting the service. Re-
verse proxy (no caching) was placed between the client and server. The average

18

packet round trip time was 33 ms and constituted less than 1% of the service
time. Server was hosted on Intel Core i7 2670qm running at 2.2 Ghz, 4GB
DDR3 665MHz, Windows 7 professional sp1 64bit. Database server (MSSQL
2008 R2) was running at the same host asWeda server so its latency is included
in total amount of RPT. It was found that RPT times are mainly consisted of
latency of data access layer (99%).

Test case for measuring response time instability has been defined with con-
stant payload of GetCapabilities operation invoked at OGC SOS webservice.
Every 10s for a 3 hours a request was sent and results measured what gave us
more than 1000 samples. Server processed each request by proper serializa-
tion at each layer up to the bottom data access layer. Backward propagation
of results was packed into response frames by Weda API and metadata about
server processing times were glued into the response. Illustration of setup and
measuring points can be viewed at figure 5.1.

T1

T4

T2

T3

request

reply

T1 - time of the request sent
T2 - time of the request received
T3 - time of the response sent
T4 - time of the response received

Service consumer Service providerInternet

Figure 5.1: Benchmark setup

Following formulas describe what is evident from the figure, so how the
request processing time (RPT) and network round trip time (RTT) was col-
lected. RTT includes a time for request forwarding achieved by our reverse
proxy. This was used to simulate such a device’s delay.

RT = T4− T1 (5.1)

RPT = T3− T2 (5.2)

RTT = (T2− T1) + (T4− T3) = (T4− T1)− (T3− T2) = RT− RPT (5.3)

. Performance analysis

Performance trends and uncertainity results are shown at figure 5.2.

19

 2000

 4000

 6000

 8000

 10000

[m
s
]

[s]

RT

 1500

 1750

 2000

 500 510 520 530

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

1600
2500

3500
4500

5700
7000

9100

RT, [s]

RT - probability density
 function (PDF)

 2000

 4000

 6000

 8000

 10000

[m
s]

[s]

RTT

 0
 0.1
 0.2
 0.3
 0.4
 0.5

1600
2500

3500
4500

5700
7200

9700

RTT, [s]

RTT - probability density
 function (PDF)

 0
 100
 200
 300
 400
 500
 600
 700

[m
s]

[s]

RPT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

0 90 200
470

1080

RPT, [s]

RPT - probability density
 function (PDF)

Figure 5.2: Performance trends and probability density of RT, RTT, RPT

It can be seen that response times are constant for 50% (1600-1700ms) sam-
ples. 73% of sample’s RT were close to 95th percentil. 26% of samples have
uncertain response time varying from 2s to 11s (four times more then average
value). RTT is main part of RT value. It’s distribution is very similar to RT as
48% of RTT’s are between 1600 and 1700ms. One small peak can be found at
4,5s where 7% of samples are situated.

Table 5.1 shows statistics of the test. A ratio between standard deviation
and average value is used as uncertainty measure. From the table we get that
RT and RTT have relatively small uncertainity but RPT has significant insta-
bility however not much affecting final RT. Very small amount of samples are
significantly affected by RPT giving more than 1s to total RT. From this point
there is no chance to significantly improve performace by improving serial-
ization technique (except adding the compression) or dealing much with the
implementation [1].

. Hypothesis checking technique and Goodnes-Of-
Fit analysis

Collected experimental data can be used to obtain an approximation of the re-
sponse time distribution of instability in the distribution function. We verify
several hypotheses that experimental data are the most suitable one of these

20

Table 5.1: Performance statistics: RT, RPT, RTT

Min
[ms]

Max
[ms]

Avg
[ms]

95th
[ms]

Std.dev. Std.dev /
Avg [%]

RPT 10 1280 31 18 54 940
RTT 1580 10754 2197 1630 1244 56.6
RT 1608 10773 2258 1669 1243 55.8
ping
RTT

32 367 40 35 3 1.7

distribution functions: Normal, Exponential, Gamma, Wibull, Generalized
extreme value, t Location-Scale or Log-Logistic distribution. Consequently, it
is necessary to answer whether the distribution function that best approximates
stochastic processes, as well simulates the overall response time, individual pa-
rameters. When parameters simplify response timeRTT from two independent
parts and TP (processing time), then the overall response of the distribution
function consists of a composition of the independent variables RTT and TP
follows:

g(R) = g(TP,RTT) = f1(TP)f2(RTT) =
∫ +∞
−∞ f1(TP)f2(R− RTT)dTP =∫ +∞

−∞
f1(R− RTT)f2(RTT)dRTT (5.4)

Kolmogorov-Smirnov test can test the hypothesis that known distribution
Ψ equals to another distribution Θ. That means, that this test null-hypothesis

H0 : Ψ = Θ (5.5)

against alternative hypothesis

H1 : Ψ ̸= Θ (5.6)

Kolmogorov-Smirnov statistics for the two-sample Kolgomorov-Smirnov test
is as follows:

D(n,n′) = supx|F1,n(x)− F2,n′(x)| (5.7)

where F1 and F2 are empiric distribution functions of first and second sam-
ple. Null-hypothesis is rejected at level α when

Kα >

√
nn′

n+ n′D(n,n′) (5.8)

In our work we used Matlab numeric computing environment
(http://www.mathworks.com). We also used the GNU Octave opensource
(http://www.gnu.org/software/octave/) but we have found the results inapro-
priate and pure.

21

The technique of hypothesis checking consist of two basic procedures.
First, values of distribution parameters are to be estimated by analyzing ex-
perimental sample. This step is crucial for finding the distribution and can be
very time consuming. The question is how to estimate the unknown parameters
of a distribution given the data from this distribution. And how good are these
estimates and are they close to the actual ‘true’ parameters? For example an
iterative approach allows the parameter space to be searched and the parame-
ter values that best fit a frequency distribution to be estimated. Second step is
the null hypothesis that experimental data have a particular distribution with
certain parameters (Goodness-Of-Fit). A probability density function (PDF)
represents the distribution of values for a random variable. The area under the
curve defined the density (or weight) of the function in a specific range. The
density of a function is very similar to a probability. To perform hypothesis
checking itself we used the “kstest” function:

[h, p− value] = kstest(x,Name,Value)

This function starts a Kolmogorov-Smirnov test of the null hypothesis that
the sample x comes from the (continuous) distribution Name with estimated
parameters of Value. I.e., if F and G are the CDFs corresponding to the sample
and Name, respectively, then the null is that F == G. The p-value of the test
is returned. One often “rejects the null hypothesis” when the p-value is less
than the predetermined significance level which is often 0.05 or 0.01, indicating
that the observed result would be highly unlikely under the null hypothesis
(i.e., the observation is highly unlikely to be the result of random chance). A
significance level of 0.05 would deem extraordinary any result that is within
the most extreme 5% of all possible results under the null hypothesis. In this
case a p-value less than 0.05 would result in the rejection of the null hypothesis
at the 5% (significance) level.

From figure 5.2 we have found that each of our distribution (RT, RTT,
RPT) is bimodal, with two relative maxima. In this case the mean and median
are not very useful since they give only a “compromise” value between the two
peaks. Such a behavior makes it very hard to find some matching theoretical
distribution. The option to get some relevant results here is to decompose the
bimodal distribution into the unimodal components. Bimodal distribution can
indicate that the mean of the process has been shifted over the period covered
by the data. In our dataset the bimodality wasn’t caused by shifting themean in
time or space and it is constantly distributed accross the dataset. This behavior
is specific to the Websocket transport protocol.

In following work we have tried to check the number of hypothesis that
experimental data conform to Normal, Exponential, Gamma, Weibull, Gen-
eralized extreme value, t Location-Scale or Log-logistic distribution. Distri-
bution is then described by its parameters, for example by mean µ and stan-
dard deviation σ. Parameters for standard distributions were extracted from
“dfittool”,“gamfit” and “wblfit” Matlab’s functions.The alpha value used for
all tests was the default 0.05.

22

To check the hypothesis that the vector data has a normal distribution

y = f(x|µ, σ) = 1
σ
√
2π

e
−(x−µ)2

2σ2

following test is to be run: [h, p] = kstest(data, [datanormcdf(data, µ, σ)]). Another
distributions are tested similarily. To check if it has Exponential distribution

y = f(x|µ) = 1
µ
e−

1
µ

we used [h, p] = kstest(data, [data expcdf(data, µ)]). To check if it has Gamma
distribution

y = f(x|a, b) = 1
baΓ(a)

xa−1e
−x
b

we used [h, p] = kstest(data, [data gamcdf(data, a, b)]). To check if it has Weibull
distribution

f(x|a, b) = b
a
(
x
a
)b−1e−(x/a)b

we used [h, p] = kstest(data, [data wblcdf(data, a, b)]). To check if it has General-
ized extreme value distribution with shape parameter k ̸= 0

y = f(x|k, µ, σ) = (
1
σ
exp(−(1+ k

(x− µ)
σ

)−
1
k)(1+ k

x− µ
σ

)−1− 1
k

for 1+ hx−µ
σ > 0: [h, p] = kstest(data, [data gevcdf(data, k, σ, µ)]). To check if it has

t Location-Scale distribution

Γ(v+1
2)

σ
√
vπΓ(v2)

[
v+ (x−µ

σ)2

v
]−(v+1

2)

we used pd = makedist(′tLocationScale′,′ mu′, µ,′ sigma′, σ,′ nu′,nu)
[h, p] = kstest(data, [data cdf(pd, data)]). To check if it has Loglogistic distribu-
tion we check if ln(x) has logistic distribution

a
x−µ
σ

σ(1+ e
x−µ
σ)2

by [h, p] = kstest(data, [data cdf(′loglogistic′, data, µ, σ)])

Hypothesis checking results can be seen at the tables 5.2, 5.3, 5.4. Main
finding was that none of the distributions fits well to the whole dataset, mainly
because of its binomality. Other finding was that the better approximation
can be achieved by providing less samples to the test(!).The deviation of
experimental data significantly affects goodness of fit. Because of binomality,
we divided the dataset into two groups that were analyzed separatelly. As
we didn’t want to get the good looking approximation for every price, we

23

Table 5.2: RT Goodness Of Fit approximation

All Group1 Group2
Normal µ = 2878.21

σ = 3935.31
p = 1.1387e− 147

µ = 1782.83
σ = 361.03
p = 2.23 ∗ 10− 83

µ = 7038.07
σ = 7217.27
p = 8.3123e− 25

Exponential µ = 2878.21
p = 6.8135e− 194

µ = 2959
p = 1.8899e− 147

µ = 7038.07
p = 4.2567e− 39

Gamma a = 2.18991
b = 1314.31
p = 1.6679e− 118

a = 35.0228
b = 50.9047
p = 2.0579e− 73

a = 2.68135
b = 2624.83
p = 1.4613e− 22

Weibull a = 3106.32
b = 1.18815
p = 1.1047e− 142

a = 1934.56
b = 3.94769
p = 7.8788e− 123

a = 7796.64
b = 1.32664
p = 3.6056e− 23

Generalized ex-
treme value

k = 1.81816
σ = 91.9042
µ = 1657.77
p = 5.1726e− 10

k = 1.06328
σ = 40.9807
µ = 1640.55
p = 0.0033

k = 0.734909
σ = 806.742
µ = 4584.11
p = 7.5435e− 06

t Location-Scale µ = 1645.32
σ = 36.3157
nu = 0.434106
p = 1.2788e− 103

µ = 1650.59
σ = 37.7363
nu = 0.929007
p = 1.1563e− 48

µ = 4647.45
σ = 161.458
nu = 0.517398
p = 1.8071e− 05

Log-Logistic µ = 7.60309
σ = 0.265017
p = 1.2371e− 97

µ = 7.43857
σ = 0.0568205
p = 3.6172e− 63

µ = 8.55282
σ = 0.217237
p = 2.2766e− 11

decided that we don’t want to achieve better p-values by separating the groups
to smaller and smaller datasets since such a results don’t make any practical
sense. Uncertainity which exists here means that generally we can’t predict
a response times and describe them by analytical formula especially for the
distributions tested. Only prediction we try to make for RTT vector in the
next section.

From the results it is remarkable, that the Exponential distribution in our
case describes experimental data worst of all. Generalized extreme value dis-
tribution gave better approximation than the other six ones for RT and RTT.
For Group 1 we cannot reject the hypothesis at 1% significance level since p-
value is grater than 0.01. Because k > 0, the GEV distribution is the type II, or
Frechet, extreme value distribution. Like the extreme value distribution, the
generalized extreme value distribution is often used to model the smallest or
largest value among a large set of independent, identically distributed random
values representing measurements or observations. For Group 2 we cannot re-
ject the hypothesis that the RTT vector data has a t Location-Scale distribution
at significance leve 5%. Because of its deviation, RPT is worse to predict than
the RTT of Weda as Websocket subprotocol. Results of the Goodness Of Fit
can be visually verified by looking at Figure 5.3.

24

Table 5.3: RTT Goodness Of Fit approximation

All Group 1 Group 2
Normal µ = 2197.11

σ = 1244.08
p = 5.8449e− 133

µ = 1662.99
σ = 172.165
p = 2.3842e− 71

µ = 4734.21
σ = 981.372
p = 4.7577e− 13

Exponential µ = 2197.11
p = 8.5869e− 207

µ = 1662.99
p = 2.1338e− 244

µ = 4734.21
p = 3.7437e− 38

Gamma a = 5.05036
b = 435.04
p = 1.0069e− 119

a = 136.526
b = 12.1807
p = 2.6133e− 61

a = 33.0144
b = 143.399
p = 2.7013e− 10

Weibull a = 2497.49
b = 1.92818
p = 7.3111e− 109

a = 1751.04
b = 5.35065
p = 9.6702e− 129

a = 5138.3
b = 3.83308
p = 1.5029e− 13

Generalized ex-
treme value

k = 1.25514
σ = 55.6306
µ = 1624.01
p = 2.7715e− 13

k = 0.642105
σ = 24.0013
µ = 1611.7
p = 0.0110

k = 0.107772
σ = 507.259
µ = 4373.43
p = 3.9086e− 05

t Location-Scale µ = 1609.72
σ = 14.3186
nu = 0.425903
p = 3.2866e− 62

µ = 1611.94
σ = 16.8082
nu = 0.930244
p = 9.2490e− 31

µ = 4619.14
σ = 110.453
nu = 0.781641
p = 0.2163

Log-Logistic µ = 7.48992
σ = 0.187296
p = 5.9267e− 93

µ = 7.4003
σ = 0.0245429
p = 1.4337e− 35

µ = 8.43106
σ = 0.0679032
p = 9.4798e− 04

Table 5.4: RPT Goodness Of Fit approximation

All Group 1 Group 2
Normal µ = 31.4705

σ = 54.255
p = 2.2663e− 94

µ = 17.9119
σ = 5.43757
p = 2.0506e− 56

µ = 78.7223
σ = 101.303
p = 5.8951e− 32

Exponential µ = 31.4705
p = 1.0056e− 71

µ = 17.9119
p = 2.6429e− 190

µ = 78.7223
p = 1.7663e− 49

Gamma a = 1.85158
b = 16.9966
p = 5.6492e− 105

a = 13.8501
b = 1.29327
p = 3.2528e− 41

a = 3.66054
b = 21.5057
p = 9.5675e− 28

Weibull a = 33.2591
b = 1.12114
p = 5.7279e− 75

a = 19.8199
b = 2.99727
p = 3.3529e− 59

a = 87.07
b = 1.30218
p = 1.5302e− 36

Generalized ex-
treme value

k = 0.577439
σ = 7.6873
µ = 17.3101
p = 3.7324e− 52

k = −0.00838105
σ = 4.04473
µ = 15.7567
p = 1.3543e− 37

k = 1.0481
σ = 1.64982
µ = 60.2331
p = 1.3088e− 10

t Location-Scale µ = 17.3695
σ = 1.64654
nu = 0.570363
p = 1.6232e− 47

µ = 17.5933
σ = 1.80677
nu = 1.63181
p = 8.7519e− 18

-

Log-Logistic µ = 3.05335
σ = 0.542686
p = 7.9606e− 63

µ = 2.86082
σ = 0.122485
p = 2.6621e− 25

µ = 4.14736
σ = 0.113534
p = 3.8192e− 22

25

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Data

D
en

si
ty

rtt1 data
Normal
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−Logistic

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

rtt1 data
Normal
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−Logistic

4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

x 10
−3

Data

D
en

si
ty

rtt2 data
Normal
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−logistic

4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

rtt2 data
Normal
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−logistic

10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

Data

D
en

si
ty

rpt1 data
Normal
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−logistic

10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

rpt1 data
Normal
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−logistic

200 400 600 800 1000 1200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Data

D
en

si
ty

rpt2 data
Normall
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−Logistic

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

rpt2 data
Normall
Exponential
Gamma
Weibull
GEV
t Location−Scale
Log−Logistic

Figure 5.3: PDF and CDF fit on Group1 and 2 of RT, RTT, RPT

26

. Performance simulation

In theoretical studies of Websocket subprotocol’s performance one may want
to simulate its response time. We can do this well when we know a distribution
law describing the random variable.

As we didn’t find any good fitting theoretical distribution for a whole
dataset, in approach of simulation we must deal with the composition of two
distribution laws f1(Group1) and f2(Group2) for each data vector (RT, RTT or
RPT). Normally the joint probability distribution of two random variables is
specified by a function of two variables, often a cumulative probability distri-
bution function or a probability density function. Our observations are mutu-
ally exclusive. So Group1 + Group2 could be the answer for our composition
rule. Please note that this is not true for other cases where distributions are
not mutually exclusive. We can combine datasets in this way only because
when Group1 makes an observation, there is no corresponding observation
fromGroup2. There is no overlap. In this case, the intersectionGroup1∩Group2
is empty, leading to the conclusion: g(Group1∩Group2) = 0. This explains why,
for the mutually exclusive case, g(Group1 or Group2) = f(Group1) + f(Group2).
Finally we can write:

g(data) = g(Group1,Group2) = f1(Group1) + f2(Group2)

When trying to simulate RTT distribution for example (which was the only
onewhere the hypothesis couldn’t be rejected because it’s relativelly small stan-
dard deviation), the f1(RTT1) can be a Generalized extreme value distribution
with shape parameter k ̸= 0 and the f2(RTT2) can be a t Location-Scale distri-
bution with individual parameters.

Our simulation approach results then in formula:

g(RTT) = f(RTT1|k, µ1, σ1) + f(RTT2|v, µ2, σ2) =

(
1
σ1
exp(−(1+ k

(RTT1 − µ1)
σ1

)−
1
k)(1+ k

RTT1 − µ1
σ1

)−1− 1
k+

Γ(v+1
2)

σ2
√
vπΓ(v2)

[
v+ (

RTT2−µ2
σ2

)2

v
]−(v+1

2) (5.9)

for 1+ kRTT1−µ1
σ1

> 0
By combining data, additional “noise” is introduced into the data set. The

extra noise increases the variance and therefore, also increases the uncertainty
and the size of the confidence interval. In such cases, it is worse to combine
the data sets than to analyze them separately. One must try both approaches
and choose the one which is most appropriate for his needs.

To simulate a Websocket subprotocol response time, you can use a Matlab

27

function which has been found to be good approximation:

g(rndRTT) = horzcat(gevrnd(k, σ1, µ1,m,n1),

random(′tlocationscale′, µ2, σ2, v,m,n1)). (5.10)

It generates m by n vector of random numbers chosen from the generalized
extreme value (GEV) distribution with shape parameter k, scale parameter σ1,
and location parameter, µ1 and t Location scale distribution with location pa-
rameter µ2, scale parameter σ2 > 0, and shape parameter ν > 0.

For example you can simulate RTT distribution by running this command
in Matlab:

rndRTT = horzcat(gevrnd(0.642105, 24.0013, 1611.7, 1, 740),
random(′tlocationscale′, 4619.14, 110.453, 0.781641, 1, 157)) (5.11)

An accuracy of simulated RTT as compared to actual data obtained exper-
imentally can be evaluated by use of the kstest2(x, y) function. This function
performs a two-sample Kolmogorov-Smirnov test to compare the distributions
of values in the two data vectors x and y. The null hypothesis for this test is that
x and y have the same continuous distribution. If we try to check the hypothe-
sis that our random variable has our analyzed composite distribution, we run
this test in Matlab:

[h, p] = kstest2(rndRTT,RTT)

P-value for our random vector is 0.0745, so hypothesis that the random vari-
able vector has our composite distribution cannot be rejected at significance
level 5% an we can confirm that our Websocket subprotocol’s RTT can be
simulated by developed method.

. Conclusion

We have found that the response time is mainly consisted of RTT delays while
RPT plays a very small role in the RT although it has significant standard de-
viation.Then we prove that the probability density of RT, RTT and RPT is
binomial distribution. It was shown that the composite function can be di-
vided to disjont sets where first set has Generalized extreme value distribution
and another set has t Location-Scale distribution, which models the smaller
peak (for RTT).

These results provide us the opportunity to predict RTT ofWebSocket sub-
protocol by developed formula (5.9). At the endwe give an example of random
variable generator of such predicted RTTs (5.10) and we test the correctness of
prediction of generated data against the experimental benchmark results using
a two sample Kolmogorov-Smirnov test.

28

. Performance testing

. Overview

To demonstrate the ability of architecture to communicate in real time between
the client and server and to investigate the benefits and the bottlenecks ofWeda
I performed experiments to compare the Weda-style against conventional us-
age of web service with RPC-style (SOAP over HTTP) or REST-style. Test
scenarios are outlined in table 6.1.

. Measurement results

Test case 1 – constant-time bursts from 1 client
Theperformance test in the local area was performed on the LANwith a 0.2

milliseconds ping round trip time (RTT). Each request was consisted of call
to GetCapabilities operation of SOS webservice. I first measured the message
response time for middle-sized messages with 1 client and relatively high load
peaks to simulate the behaviour of the system which we try to overhelm. This
test case lasts for 180s and burst duration limit was set to 5ms. During the 5ms
a lot of requests were invoked (since generator was not blocked by awaiting
the responses in Weda-style). The parallel transport of Weda begins to show
its benefit, in which Weda transport is not restricted by the bandwidth of a
single HTTP request and does use the bandwidth of a duplex channel, thus
boosting the transfer rate. As we can see from the results in Figure 6.1, Weda’s
throughput is significantly bigger (40 times) than the throughput of SOAP
over HTTP or REST web service. SOAP/REST responds by one turn per
second due its synchronnous processing. This great result has an other side of
coin. End-user response time is also bigger as server deals with huge number
of concurrent requests simultaneously. For this test case, where burst duration
is 5ms, our response times are still less than timeout limit.

Test case 2 – variable publish rate from 1 client
The next measurement shows the results of test case 2 during which a server

was interviewed uniformly by one client. A multiple measurements were made
at minimal possible sample rates to simulate the behavior which is very close
to one with connected sensor asking to SOS’s InsertObservation operation at
its measurement rate. As we can see in Figure 6.2, a very low publish rates can
improve throughput two-times.

29

Table 6.1: Test scenarios

Test
case

Strategy Dura-
tion

Clients Delay Other parame-
ters

1 Burst (constant client
count, constant burst
duration)

180s 1 15s 5ms burst dura-
tion

2 Simple (constant client
count, variable publish
rate)

60s 1 var 10-100 turns / s

3 Burst (constant sample
count, variable client
count)

120s 1-10 1s 10 samples per
burst

4 Burst (burst duration,
variable client count)

6/120s 1-10 1s 5ms burst dura-
tion

5 Simple (constant pub-
lish rate, variable client
count)

300s 1-50 1s

 0

 10

 20

 30

 40

 50

 60

 70

00:00
00:30

01:00
01:30

02:00
02:30

03:00

tu
rn
s

[s]

TC1 - throughput

weda
rest

soap

Figure 6.1: TC1 (constant burst) - throughput

30

TC2 - throughput

weda rest soap

00:10
00:20

00:30
00:40

00:50duration [s]
 0 10 20 30 40 50 60 70 80 90 100

publish rate [turns/s]

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

turns per second

Figure 6.2: TC2 (variable rate) - throughput

TC2 - 90th percentil response time

weda rest soap

00:10
00:20

00:30
00:40

00:50duration [s]
 0 10 20 30 40 50 60 70 80 90 100

publish rate [turns/s]

 10

 100

 1000

 10000

 100000
[ms]

Figure 6.3: TC2 (variable rate) - 90th percentil - response time

31

Test case 3 – constant sample count from growing number of clients
Other test case (3) shows the information about the system’s behaviour

when a new client is connecting every 12s and then it sends a burst of exactly 10
samples to the server each 1s. This burst strategy is different between the others
because it generates strictly a constant amount of samples per burst, no matter
how much time it takes.This will make a pretty same conditions to all tested
bindings as Weda cannot generate more asynchronnous requests than SOAP
and REST in such a test case. As we can see from the Figure 6.4, throughput
is growing exponentially with the clients for Weda. It is opposite to the REST
and SOAP.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 1 2 3 4 5 6 7 8 9 10

tu
rn

s
p

e
r

se
co

n
d

clients

TC3 - throughput

weda
rest
soap

Figure 6.4: TC3 (variable clients and constant burst) - throughput

Test case 4 – variable clients and constant-time bursts
This test case gives us illustration of the worst test case for Weda-style with-

out proper control mechanism. Test case 4 shows the situation at which a
variable client count sends a burst of requests during the burst duration limit.
Weda’s test duration had to be shorten because in such a test case, server was
overhelmed.

Test case 5 – asynchronicity differences suppressed
The last presented measurement is a test case 5 with simple strategy, con-

stant publish rate and variable client count that is incremented up to 50 simul-
taneous clients each 6s, every client requesting the server every 1s. As we can
see from Figure 6.5 a Weda’s responsiveness is very good and constant even
with the maximum number of clients in opposite of SOAP and REST. Theirs
response times gets worse with each client connected. Throughput in turns per
seconds is very similar for all three configurations and copies the linear curve.
Throughput in KB/sec shows Weda’s smaller overhead and that it has a very
low impact on system’s performance.

32

 10

 100

 1000

 10000

 0 10 20 30 40 50

[m
s]

clients

TC5 - response time

weda min
rest min

soap min

weda max
rest max

soap max

weda 90th
rest 90th

soap 90th

Figure 6.5: TC5 (variable clients) - response time

. Conclusion

Findings on the throughput attribute
From burst-based test cases we can learn that synchronous styles (SOAP

over HTTP and REST) can only achieve a small amount of turns against the
Weda-style. Weda-style has 40times bigger throughput, but as such it is more
susceptible to DDoS attacks without robust flow control mechanism (Web-
Socket supports 1,000 concurrent sessions). We have to mention that the tests
ran without any flow control mechanism implemented and we see how the be-
haviour of the transport binding can result into impropriate response times for
other clients during the high load from one attacker. So we highly recommend
to implement some robust flow control mechanism in future work starting with
the proposed one. A great opportunity to deal with overhelming issues is to
add an admission control mechanism at each input queue. It is on discussion if
such a mechanism should be required directly in WebSocket specification (not
in Weda-style). Then WebSocket-standard server implementations would be
forced to implement the mechanism. As we can see here, there are still ques-
tions to discuss in WebSocket specification itself.

Findings on the scalability attribute
Very interesting results we obtained from the test case 3 which suppressed

the differences caused by asynchronous or synchronous transport. We saw
that throughput increases exponentially with number of clients forWeda-style.

33

RPC and REST-styles have their peak-throughput relatively low at 6 clients
count (each client invoked exactly 10 samples per burst every 1s). Weda-style
proves there that is more scalable in the terms of concurrent clients. Weda’s
minimum response time (in TC3) shows us that there is opportunity for im-
plementation of Weda API to perform better than other styles but big devi-
ation caused that 90th percentil was worse than for RPC and REST-styles.
Still this is from a burst-based test case which makes the differences in asyn-
chronous/synchronnous server processing (testing server consisted of async
begin/end operations processed trully asynchronously in terms of transport
and server calculation as well).

Findings on the response time attribute
As we mentioned, response times were negativelly affected in test cases 1-4

because of asynchronnous processing which increased peak-throughputs for
Weda-style. To suppress this behaviour we prepared test case 5 which gave us
another view onWeda-style responsiveness. Conditions were set in a way lead-
ing to a very similar throughput behaviour (we preventedWeda-style to send /
process more samples than other styles). With this in mind we can take a closer
look on response time parameters for Weda-style in constant load. From the
results we obtained that Weda’s 90th percentil response time is lowest and un-
affected by incrementing client count unlike the RPC and REST-style. This
measurement gave us a good news for decisions about Weda-style responsive-
ness quality attribute. We can see, that bad results given in TC1-4 are affected
by implementation of asynchronous processing and missing flow and admis-
sion control mechanism. These results have shown our main objectives for
work in the future. TC5 shows that a Weda-style responsiveness is a little bit
better than for RPC and REST-style.

34

. Conclusions and future work

. Summary

In this work author is presenting new Web-Event-Driven-Architecture
(Weda) architectural style, protocol and developed API, which can be estab-
lished easily into existing web services stack, so millions of web services can
be extended, but are not forced to be completely rewritten. I have shown its
strengths as being firewall friendly web standards based solution that can be
plugged into existing applications and also I implemented Weda architectural
style into the Weda API (0.1). The considerations about usability of Web-
Socket protocol for messaging purposes were presented together with addi-
tional constraints that must be made. Informal description of architecture
style was written to be easily convertible to RFC or IANA draft. Architecture
was modeled and verified by model checker UPPAAL, theory of timed au-
tomata and temporal logic and the work can be used to model WebSockets
and its subprotocols or extensions in the future. There is no previous mod-
elling work done before on Websockets subprotocol.

Practically the architecture was studied with the use of two GIS-based ex-
perimental systems. Event processing capabilities of proposal of Weda ar-
chitectural style are interesting in conjunction with web and can change a user
experience and coupling of applications in distributed system intensively. Pre-
sented framework allows addition to Weda to provide complex event process-
ing via the World-Wide-Web. On basic concepts, a proposal of World-wide-
web based ESB topology was built and an example of usage scenario has been
given. As ESBs can be implemented inside a private cloud optimized IaaS ar-
chitecture today, there is an opportunity to deploy WWW friendly ESB cloud
native container over a public cloud even with PaaS or SaaS architecture.
Moreover applications built as such cloud-enabled application platform don’t
rely on cloud management services and can be deployed on dedicated web
servers too, especially if services are not necessarily to be distributed across
multiple providers and load-balanced.

Lastly a performance study is presented. I studiedWeda’s quality attributes
and especially response time instability with the help of theory of probabil-
ity and mathematical statistics. I found a prediction formula of system’s
response time. I also offer a random number generator for other theoretical
studies. To be able to collect the input data I had to develop a framework

35

where all middleware could be tested which leads to self-made multithreaded
load tester tool as no such a tools exists for WebSocket subprotocols today.
I then wanted to see how conventional architecture style middleware (SOAP,
REST) and Weda performs against each other in terms of throughput, scala-
bility, response time and network traffic load. I show that Weda architecture
style has great impact on the throughput quality attribute. Server overhelm-
ing issues can have a bad impact on end-user latency. During the high load,
special limits have to be set to Weda-style to eliminate susceptibility to DDoS
attacks. I also deal with the question if such an admission control mechanism
should be an integral part of WebSocket specification. To deal with such an
issue for collecting a representative benchmark data I present the last test case
at which response time attribute was studied with approach to suppress limits
mentioned. This finding leads to conclusion thatWeda-style scale much better
than other styles and it is a little bit faster in terms of response time.

I can recommend Weda-style for

• “shared” systems crossing organization boundaries

• read & write data (not read-mostly)

• non-idempotent events or operations

• need of server invoking clients independetly (pushing)

• realizing SOA 2.0 behaviour

• after dealing with flow and admission control as alternative to RPC or
REST architectural styles.

I cannot recommend Weda-style for

• load-balanced applications and read-mostly systems

• use cases with small amount of turns / messages per client

. Future work

One of the main aspects of the future work should concentrate on improving
the proposed architecture style by addressing the following issues:

• Stabilization of Weda API

• Adding more features to Weda-style (session reestablishment, better flow
control, configuration parameters, admission control ...)

• Adding more features to Weda API (ESB features, event processor layer
improvements ...)

• Transforming informal specification to the RFC or IANA draft.

36

• Extension of formal model to show duplex service behavior

• Adding gzip or MTOM compression to the transport and measure im-
provement of performance.

• Measure performance of use-case “WMS over Weda”

• Adding new implementations in more programming languages

. Publications

Articles

1. J. Hübnerová, Towards Solution for the Public Web-based GIS Monitoring
and Alerting System, Proceedings of International Conference GIS Os-
trava 2014 - Geoinformatics for Intelligent Transportation, January 2014,
Czech republic, ISBN 978-80-248-3311-8

• Presented at the International Conference GIS 2014 - Geoinformat-
ics for Intelligent Transportation. (oral presentation)

2. J. Hübnerová,Model based analysis and formal verification ofWEDA architec-
tural style, Proceedings of IEEE International Conference on Informatics
& Applications (ICIA), September 2013, Poland, ISBN 978-1-4673-5255-0

• Presented at the 2nd IEEE International Conference on Informatics
& Applications (ICIA 2013), Lodz, Poland. (oral presentation)

3. J. Hübnerová, Weda - new architectural style for world-wide-web architecture,
Proceedings of ISAT 2013, 34th International Conference Information
Systems Architecture and Technology, September 2013, Poland, ISBN
978-83-7493-804-4

• Presented at the 34th International Conference Information Sys-
tems Architecture and Technology (ISAT 2013), Szklarska Poreba,
Poland. (oral presentation)

4. J. Hübnerová (Dařbujanová), High performance mobile device RIA using bi-
nary MOM and SOA over WebSockets, Proceedings of CSE’2010, Interna-
tional Scientific Conference on Computer Science and Engineering, Slo-
vakia, ISBN 978-80-8086-164-3

• Presented at the 8th International Scientific Conference on Com-
puter Science and Engineering (CSE 2010), Kosice, Slovakia. (oral
presentation)

5. J. Hübnerová, Towards event propagation ESB for realizing SOA 2.0 in public
cloud, International journal on Cloud Computing: Services and Architec-
ture (IJCCSA), 2013, submitted

37

• Submitted journal article
• Under review

Workshops

1. J. Hübnerová, Optimalizace přenosu a zpracování dat v SOA architektuře a
RIA aplikacích, doctorand seminar, Liberec 2009

2. J. Hübnerová, Aplikace Action Message Format 3 na komplexní datové struk-
tury, měření a redukce latence přenosových protokolů v SOA architektuře, doc-
torand seminar, Liberec 2010

3. J. Hübnerová, High performance RIA using binary MOM and SOA over Web-
Sockets, doctorand seminar, Liberec 2010

4. J. Hübnerová, SensorWeb Enablement andmigration of SOS transport binding
from SOAP/REST to WebSocket protocol, doctorand seminar, Liberec 2011

5. J. Hübnerová, Towards universality and quality attributes in World-Wide-
Web architectures used for inter-process communication, doctorand seminar,
Liberec 2012

6. J. Hübnerová, WEDA - new architectural style for World-Wide-Web Architec-
ture, doctorand seminar, Liberec 2013

38

Bibliography

[1] D. Davis and M. Parashar. Latency performance of soap implementations,
2002.

[2] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural
design environments. SIGSOFT Softw. Eng. Notes, 19(5):175–188, Dec. 1994.

[3] A. Gorbenko, V. Kharchenko, S. Mamutov, O. Tarasyuk, Y. Chen, and
A. Romanovsky. Real distribution of response time instability in service-
oriented architecture. In Proceedings of the 2010 29th IEEE Symposium on
Reliable Distributed Systems, SRDS ’10, pages 92–99, Washington, DC, USA,
2010. IEEE Computer Society.

[4] K.I.F.Simonsen and L. Kristensen. Towards a cpn-based modelling ap-
proach forreconciling verification and implementation of protocol models.
In 27th IEEE/ACM International Conference on Automated Software Engineer-
ing, 2012.

[5] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[6] K. Michal. Fault diagnostic based on temporal analysis. Doctoral dissertation,
UNIVERSITÉ JOSEPH FOURIER-GRENOBLE and BRNO UNIVER-
SITY OF TECHNOLOGY, 2006.

[7] C. Pahl, S. Giesecke, and W. Hasselbring. Ontology-based modelling of
architectural styles. Inf. Softw. Technol., 51(12):1739–1749, Dec. 2009.

[8] C.Walck. Hand-book on STATISTICALDISTRIBUTIONS for experimentalists.
Particle Physics Group, Fysikum, University of Stockholm, Dec. 1996.

[9] T. Zandt. How to fit a response time distribution. Psychonomic Bulletin &
Review, 7(3):424–465, 2000.

This short list contains only publications relevant to the content of this report. A complete
list of references is part of the dissertation document.

39

	Introduction
	Problem statement and motivation
	Contribution of dissertation
	Contributions in the area of software architectures
	Contributions in the area of formal modelling
	Contributions in the area of performance engineering

	Organization

	Informal description of Weda architectural style
	Overview
	Comparison of Web services architectural styles

	Model based analysis and formal verification
	Background
	Modeling the Weda architectural style
	Verification

	Experimental systems and case studies
	Distribution of response time instability
	Methods and settings
	Performance analysis
	Hypothesis checking technique and Goodnes-Of-Fit analysis
	Performance simulation
	Conclusion

	Performance testing
	Overview
	Measurement results
	Conclusion

	Conclusions and future work
	Summary
	Future work
	Publications
	Bibliography

