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Six tons large real world ill-posed problem:




Solving large scale discrete ill-posed problems is frequently based upon
orthogonal projections-based model reduction using Krylov sub-
spaces, see, e.g., hybrid methods. This can be viewed as

approximation of a Riemann-Stieltjes distribution function
via matching moments.



Outline

. Problem formulation

. Propagation of noise in the Golub-Kahan iterative bidiagonaliza-
tion

. Numerical illustration



The underlying problem is a linear algebraic system

Ax ~ b

which can arise, e.g., in discretization of a Fredholm integral equation
of the 1st kind

b(s)S<ACt — / K (s, t) z(t) dt = Az(t).

The right-hand side b is contaminated by noise
”bnoiseH

__ pexact noise _ —
b . b + b ) 5nO|Se — ||bexact||

< 1.

The goal is to approximate

mexact — AT bexact.
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Singular value decomposition in discrete ill-posed problems
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Properties (assumptions):

e matrices A, AL, AAT have a smoothing property:
e |left singular vectors (o of A represent increasing frequencies

as j increases,
e the system A x€XaCt — pexact  oatisfies the discrete Picard con-

dition.

Discrete Picard condition (DPC):

On average, the components [(b®¥@°t u;)| of the true right-hand
side b°%ACl in the left singular subspaces of A decay faster than

the singular values o; of A, j=1,...,n.



Left singular vectors of A represent a basis with increasing fre-
quencies; reshaped right singular vectors of A (singular images) for
the Gaussian blur
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Using the SVD the solution of Ax = b can be written as

~1 —1,,T N “;Fb
r=A""b=VX szzjzla—jvj.
Recall that 01 > 00 > ... > on and the exact components and the
noise components behave differently,
T exact T1noise
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Krylov subspace methods are projection methods. Golub-Kahan
iterative bidiagonalization (GK) of A:

Given wg = 0,s1 =b/B1 , Wwhere By =|bl|, for j=1,2,...
_ T _
ajw; = A" sj — Bjwj—1, |wil| =1,

Bi418j+1

ij - Oéj Sj, ||S]_|_1|| =1.

Sk = [81,...,8k], Wk — [wl,...,wk], SgAWk = Lka where Lk
is lower bidiagonal, S, and W, have orthonormal columns.
GK starts with the normalized noisy right-hand side s; = b/||b] .
Consequently, vectors s; contain information about the noise. Can

J
this information be used to estimate the noise level?
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Components of several bidiagonalization vectors Sj

computed via GK with double reorthogonalization:
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The first 80 spectral coefficients of the vectors S
iIn the basis of the left singular vectors U of A:
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Noise is amplified with the ratio oy/8;41

GK for the spectral components:

> (U's1),
> (Viwy) —ay (Usy),

ay (Vwy)
Bz (UT's5)

and for k=2,3,...

= (UTsp) — B (VViwg_1),
Z (VT’wk) — CEk(UTSk) .

a (V' wy)

Bra1(Usp11)
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Since the dominance in ~(U'sy) and (V1w 1) is shifted by one
component, in  ai (VIw,) = X (U'sy) — B (VIw,_1) one can not
expect a significant cancelation, and therefore

XL ~ ﬁk

Whereas X~ (V1wg) and (U'sy) do exhibit the dominance in the di-
rection of the same components. If this dominance is strong enough,
then the required orthogonality of sip41 and s in

Bra1 (Ulspyq) = = (VIwy) —ap, (U sy)

can not be achieved without a significant cancelation, and one can
expect

Br+1 <K ag .
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Noise level estimation:

GK is closely related to the Lanczos tridiagonalization of the sym-
metric matrix A AT with the starting vector s; = b/ ;.

Spectral properties of

[ of a1 B1 ]
T, = Lkakr _ a1 B Oé% + ﬁ%
- a1 Bk

a1 Bk af + B2

determine an approximation of the Riemann-Stieltjes distribution func-

tion related to the original mapping A.
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Consider the SVD of the bidiagonal matrix

L, = PO, Q"
Pk: [pg_k)7°"7plgk)] Qk: [Q](_k)7"'7Qk )] :diag (9§_k)7°' (k))

0 <6< . <o

The weight |(pgk),el)|2 of the approximate distribution function cor-

responding to the smallest (9&“)2 is strictly decreasing. At the so
called noise revealing iteration, it sharply starts to (almost) stagnate

on the level close to the squared noise level 5%056
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Square roots of the weights (left), approximation of w(\) (right):

| —— w(\): nodes oj?, weights |(b/[31,uj)|2

® nodes (9(1k))2, weights |(p(1k),e1)|2
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Image deblurring problem, image size 324 x 470 pixels,
problem dimension n = 152280, the exact solution (left) and

the noisy right-hand side (right), 6,,0icc = 3 x 1073,
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Square roots of the weights |(pgk),61)|2, Ek=1,2, ... (top)
and error history of LSQR solutions (bottom):
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The best LSQR reconstruction (left), m';lsQR,
and the corresponding componentwise error (right).

GK without any reorthogonalization!
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Denoising, problem SHAW(400), maximal amplification factor
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x10°
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original noise transformed noise

Denoising?

Subtraction of the approximate noise from the data leads to
the remaining much smoother “transformed noise”
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Main message :

Whenever you see a blurred elephant which is a bit too noisy,
the best thing is to apply, as quickly as possible,
the GK iterative bidiagonalization.
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T hank you for your kind attention!
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