FPGA in Advanced Vision Applications

Rostislav Halaš
Regional Product Engineer
Embedded Systems
National Instruments

ni.com
Tools for Measurement, Control and Automated Test

Platform – hardware

Tools for Measurement, Control and Automated Test

Platform - Software

NI InsightCM™ Enterprise

Desktops, Laptops, and Mobile

NI CompactDAQ
PXI and Modular Instruments
NI CompactRIO

ni.com
Multicore CPU systems

- Ride the CPU frequency wave
- Automatic hardware acceleration (SSE, Hyperthreading)
- Making software multithreaded
 - OpenMP (multiple cores)
 - MPI (multiple separate machines)
 - Vision Development Module
- Some problems divide well
- Others don’t
FPGAs

- Latency ✓
- Jitter ✓
- Compute power ✓
- Pipelining ✓
- Security ✓
- Weight / Power / Heat ✓
- Complexity ✗
- Raw Clock Rates ✗
- Limited Floating Point support ✗
Latency - Preprocessing

Diagram showing the process with blocks labeled as follows:
- Exp
- Readout
- Processing

The diagram illustrates the loop period with arrows pointing in both directions.
Latency – Co-processing

- Exp
- Readout
- Processing
- Loop Period
Latency – Co-processing

Exp

Readout

Exp

Loop Period

ni.com
Complexity

Counter

Analog I/O

I/O with DMA

LabVIEW FPGA

VHD

~4000 lines

ni.com
Image Processing and Visualization

- FPGA is directly in the path of the image data
- Processes pixels as they arrive
- May require some buffering—2D kernel operations
- Generates and outputs images directly or send result to host CPU
NI FPGA Hardware

- NI FlexRIO + NI 1483 adapter module
- PCIe-1473R
 - Base, medium or full configuration cameras
 - General purpose digital I/O
- LabVIEW FPGA example programs
 - Area scan and linescan image acquisition
 - Threshold
 - Centroid
 - Bayer decoding
FlexRIO for PXI System Architecture

I/O
- FlexRIO Adapter Module
- Camera Link Module

FPGA
- FlexRIO FPGA Module
 - Kintex-7 FPGA
 - Up to 2 GB of DRAM
 - PCIe Gen 2 x 8

Processor
- PXI Platform
 - Embedded Controllers
 - Synchronization
 - Data streaming
 - Power/cooling

132 DIO

PCIe
Visualization

- Image transformation
 - Image warping, rotation and flip
 - Image compression, encryption, and authentication
- Feature highlighting
 - Filtering
 - Shading correction
- Noise reduction
 - Image averaging
 - Retinex algorithm
Image Processing Functions

FPGAs suitable to improve images and extract basic features

- **Preprocessing**
 - Image transforms
 - Image operators
 - Shading correction
 - Bayer decoding
 - Color space conversion
 - 1D & 2D FFT
 - Filtering (smooth/sharpen)
 - Binary morphology

- **Feature Extraction**
 - Edge, lines corners
 - Binary objects
 - Color

- **Measurements**
 - Centroid
 - Area measurements
Image Processing Functions

FPGAs not suitable for certain high-level algorithms

• Object-level vision functions
 – Pattern matching
 – OCR/OCV
 – Barcode reading
 – Some geometric measurements
 – Classification
High-Speed Control

- FPGA is directly in the path of the image data
- FPGA generates and outputs control commands directly
High-Speed Control

- Laser alignment/steering
 - Beam profile/position measurements
 - Low latency control output

- High-speed sorting
 - Segmentation
 - Measure parameters of contaminant
 - Trigger rejection valves

- In Air Sorting
 - Image and inspect falling product
 - Low jitter requirement for decision making and IO
Example: Medical Imaging

Challenge

Develop the signal processing backend for an Optical Coherence Tomography machine.

High Level Requirements

- Sample at 800 MS/s
- Control fast steering mirrors to perform raster scan imaging in real-time
- Stream image data over the network
FlexRIO Optimized for Deployment

I/O
- FlexRIO Adapter Module
- Interchangeable I/O
- Analog, Digital, RF
- Custom I/O with MDK

FPGA
- 132 DIO

Processor
- Controller for FlexRIO
- Kintex-7 FPGA
- Dual-Core ARM Processor
- High Speed Serial
- NI Linux Real-Time OS
- Optimized for Size, Weight, Power

ni.com
OCT Solution with Controller for FlexRIO

NI 5772
2 Ch 800 MS/s
12-bit

20 ni.com

ni.com
Image Co-processing
Visual Servo Control

- CAPTURED IMAGES
- Move Complete
- Image Capture
- VISION
- Image Feedback
- MOTION
Visual Servo Control: Direct Servo

- Control Loop
 - Position Setpoint
 - Position Feedback
 - 5ms
 - Image Processing
 - Coordinate Transform
 - Camera
 - Image Processing
 - Coordinate Transform
 - Camera

Actuator
IC-3173 EtherCAT Master: Machine Controller

Touchscreen HMI

To the network or PC

To industrial I/O

GigE (PoE)

(EtherCAT)

AKD EtherCAT Servo Drive

(EtherCAT)

ni.com
Future Looking Projects Using FPGA Co-processing

System On Module
You Might Want to Use an FPGA for Vision…

- If latency or jitter is critical
- If power consumption is critical
- If you have to speed up throughput
- If you can pipeline your algorithms
- If you have to reduce the amount of data or aggregate multiple high-speed channels
- If you are using algorithms that can take advantage of the FPGA architecture
- If the FPGA is already in the image path
- If any of the above give you a competitive advantage